【題目】如圖,點P是正方形ABCD的邊BC上一點,點M在BC的延長線上,若AP=PE且∠APE為直角.求證:CE平分∠DCM.
【答案】見解析.
【解析】
過點E作EF⊥BM于F,根據同角的余角相等可得∠APB=∠PEF,然后利用AAS證明△ABP≌△PFE,根據全等三角形的性質和正方形的性質求出BP=CF,得到∠ECF=45°即可證明結論.
證明:過點E作EF⊥BM于F,則∠PFE=90°,
∴∠EPF+∠PEF=90°,
∵∠APE=90°,
∴∠APB+∠EPF=90°,
∴∠APB=∠PEF,
在△ABP和△PFE中,,
∴△ABP≌△PFE(AAS),
∴AB=PF,BP=FE,
∵在正方形ABCD中,AB=BC,
∴BC=PF,
∴BP=CF,
∴CF=FE,即△ECF是等腰直角三角形,
∴∠ECF=45°,
∵∠DCF=90°,
∴CE平分∠DCM.
科目:初中數學 來源: 題型:
【題目】某中學現(xiàn)有學生2650人,學校為了進一步了解學生課余生活,組織調查各興趣小組活動情況,為此校學生會進行了一次隨機抽樣調查,根據采集到的數據,繪制如下兩個統(tǒng)計圖(不完整)
請你根據兩個統(tǒng)計圖中提供的信息,解答下列問題:
(1)這次抽樣調查的樣本容量是多少?在圖2中,請將條形統(tǒng)計圖中的“體育”部分的圖形補充完整;
(2)愛好“書畫”的人數占被調查人數的百分數是多少?估計該中學現(xiàn)有的學生中,愛好“書畫”的人數;
(3)求愛好“音樂”的人數對應扇形圓心角的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx﹣2與x軸交于點A(﹣1,0),B(4,0)兩點,與y軸交于點C,經過點B的直線交y軸于點E(0,2).
(1)求該拋物線的解析式;
(2)如圖2,過點A作BE的平行線交拋物線于另一點D,點P是拋物線上位于線段AD下方的一個動點,連結PA,EA,ED,PD,求四邊形EAPD面積的最大值;
(3)如圖3,連結AC,將△AOC繞點O逆時針方向旋轉,記旋轉中的三角形為△A′OC′,在旋轉過程中,直線OC′與直線BE交于點Q,若△BOQ為等腰三角形,請直接寫出點Q的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸交于、兩點,交軸于點,點關于拋物線對稱軸的對稱點為點.
(1)求線段的長度;
(2)為線段上方拋物線上的任意一點,點為,一動點從點出發(fā)運動到軸上的點,再沿軸運動到點.當四邊形的面積最大時,求的最小值;
(3)將線段沿軸向右平移,設平移后的線段為,直至平行于軸(點為第2小問中符合題意的點),連接直線.將繞著旋轉,設旋轉后、的對應點分別為、,在旋轉過程中直線與軸交于點,與線段交于點.當是以為腰的等腰三角形時,寫出的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,等邊三角形OAB的頂點A的坐標為(5,0),頂點B在第一象限,函數y=(x>0)的圖象分別交邊OA、AB于點C、D.若OC=2AD,則k=_____
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某數學老師為了了解學生在數學學習中常見錯誤的糾正情況,收集整理了學生在作業(yè)和考試中的常見錯誤,編制了10道選擇題,每題3分,對他所教的初三(1)班、(2)班進行了檢測,如圖表示從兩班各隨機抽取的10名學生的得分情況.
(1)利用圖中提供的信息,補全下表:
班級 | 平均數/分 | 中位數/分 | 眾數/分 |
初三(1)班 | __________ | 24 | ________ |
初三(2)班 | 24 | _________ | 21 |
(2)若把24分以上(含24分)記為“優(yōu)秀”,兩班各40名學生,請估計兩班各有多少名學生成績優(yōu)秀;
(3)觀察上圖的數據分布情況,請通過計算說明哪個班的學生糾錯的得分更穩(wěn)定.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與函數y=(x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使OD=OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點A(﹣1,2)、B(3,6)在拋物線y=ax2+bx上
(1)求拋物線的解析式;
(2)如圖1,點F的坐標為(0,m)(m>2),直線AF交拋物線于另一點G,過點G作x軸的垂線,垂足為H.設拋物線與x軸的正半軸交于點E,連接FH、AE,求證:FH∥AE;
(3)如圖2,直線AB分別交x軸、y軸于C、D兩點.點P從點C出發(fā),沿射線CD方向勻速運動,速度為每秒個單位長度;同時點Q從原點O出發(fā),沿x軸正方向勻速運動,速度為每秒1個單位長度.點M是直線PQ與拋物線的一個交點,當運動到t秒時,QM=2PM,直接寫出t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(8分)現(xiàn)有三張反面朝上的撲克牌:紅桃2、紅桃3、黑桃x(1≤x≤13且x為奇數或偶數).把牌洗勻后第一次抽取一張,記好花色和數字后將牌放回,重新洗勻第二次再抽取一張.
(1)求兩次抽得相同花色的概率;
(2)當甲選擇x為奇數,乙選擇x為偶數時,他們兩次抽得的數字和是奇數的可能性大小一樣嗎?請說明理由.(提示:三張撲克牌可以分別簡記為紅2、紅3、黑x)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com