【題目】已知某開發(fā)區(qū)有一塊四邊形的空地ABCD,如圖所示,經(jīng)測量∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,求這塊空地的面積?
【答案】解:連接BD,如圖所示: 在Rt△ABD中,BD2=AB2+AD2=32+42=52 ,
在△CBD中,CD2=132BC2=122 ,
而122+52=132 ,
即BC2+BD2=CD2 ,
∴∠DBC=90°,
S四邊形ABCD=S△BAD+S△DBC= ABAD+ BDBC=36m2;
答:這塊空地的面積為36m2 .
【解析】仔細分析題目,需要求得四邊形的面積才能求得結(jié)果.連接BD,在直角三角形ABD中可求得BD的長,由BD、CD、BC的長度關(guān)系可得三角形DBC為一直角三角形,DC為斜邊;由此看,四邊形ABCD由Rt△ABD和Rt△DBC構(gòu)成,則容易求解.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用同樣規(guī)格的黑白兩色正方形瓷磚鋪設(shè)矩形地面,請觀察下列圖形,探究并觀察下列問題。
(1)在第4個圖中,共有白色瓷磚 塊;在第個圖中,共有白色瓷磚 塊;
(2)在第4個圖中,共有瓷磚 塊;在第個圖中,共有瓷磚 塊;
(3)如果每塊黑瓷磚4元,白瓷磚3元,鋪設(shè)當時,共需花多少錢購買瓷磚?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,現(xiàn)有一張邊長為4的正方形紙片ABCD,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當點P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結(jié)論;
(3)設(shè)AP為x,四邊形EFGP的面積為S,求出S與x的函數(shù)關(guān)系式,試問S是否存在最小值?若存在,求出這個最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩地距離300km,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地.如圖,線段OA表示貨車離甲地的距離y(km)與時間x(h)之間的函數(shù)關(guān)系,折線BCDE表示轎車離甲地的距離y(km)與時間x(h)之間的函數(shù)關(guān)系,根據(jù)圖像,解答下列問題:
(1)線段CD表示轎車在中途停留了h;
(2)求轎車從甲地出發(fā)后經(jīng)過多長時間追上貨車.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩種機器人都被用來搬運化工原料,A型機器人比B型機器人每小時多搬運20千克,A型機器人搬運1000千克所用時間與B型機器人搬運800千克所用時間相等,兩種機器人每小時分別搬運多少化工原料?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請根據(jù)圖中提供的信息,回答下列問題:
一個水瓶與一個水杯分別是多少元?
(2)甲、乙兩家商場同時出售同樣的水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,另外購買的水杯按原價賣.若某單位想要買5個水瓶和20個水杯,請問選擇哪家商場購買更合算,并說明理由.(必須在同一家購買)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】A、B兩廠在公路的同側(cè),現(xiàn)欲在公路邊建一貨場C.
(1)若要使貨場到兩廠的距離相等,請在圖1中作出此時貨場的位置.
(2)若要求所修公路(即A、B兩廠到貨場的距離之和)最短,請在圖2中作出貨場的位置.(用尺規(guī)作圖,保留作圖痕跡,不必寫作法)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若a、b、c、d是成比例線段,其中a=5cm,b=2.5cm,c=10cm,則線段d的長為( )
A.2cmB.4cmC.5cmD.6cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在彈簧限度內(nèi),彈簧掛上物體后彈簧的長度與所掛物體的質(zhì)量之間的關(guān)系如下表:
(1)上表中,自變量是 ,因變量是 ;
(2)彈簧不掛物體的長度是 ;
(3)如果用x表示彈性限度內(nèi)物體的質(zhì)量,用y表示彈簧的長度,那么隨著x的變化,y的變化趨勢是 ,寫出y與x的關(guān)系式 ;
(4)如果彈簧最大掛質(zhì)量為25千克,你能計算出當掛重為14千克時,彈簧的長度是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com