【題目】在平面直角坐標(biāo)系xOy中,點P和圖形W的“中點形”的定義如下:對于圖形W上的任意一點Q,連結(jié)PQ,取PQ的中點,由所以這些中點所組成的圖形,叫做點P和圖形W的“中點形”.

已知C(-22),D12),E10),F(-2,0).

1)若點O和線段CD的“中點形”為圖形G,則在點,中,在圖形G上的點是 ;

2)已知點A2,0),請通過畫圖說明點A和四邊形CDEF的“中點形”是否為四邊形?若是,寫出四邊形各頂點的坐標(biāo),若不是,說明理由;

3)點B為直線y=2x上一點,記點B和四邊形CDEF的中點形為圖形M,若圖形M與四邊形CDEF有公共點,直接寫出點B的橫坐標(biāo)b的取值范圍.

【答案】(1),;(2)點A和四邊形CDEF的“中點形”是四邊形,各頂點的坐標(biāo)為:(0,0)、(0,1)、(,0)、(,1);(3)-1≤b≤0 1≤b≤2

【解析】

1)依照題意畫出圖形,觀察圖形可知點O和線段CD的中間點所組成的圖形是線段C′D′,根據(jù)點AC,D的坐標(biāo),利用中點坐標(biāo)公式可求出點C′,D′的坐標(biāo),進(jìn)而可得出結(jié)論;
2)畫出圖形,觀察圖形可得出結(jié)論;

3)利用一次函數(shù)圖象上點的坐標(biāo)特征可得出點B的坐標(biāo)為(n,2n),依照題意畫出圖形,觀察圖形可知:點B和四邊形CDEF的中間點只能在邊EFDE上,當(dāng)點B和四邊形CDEF的中間點在邊EF上時,利用四邊形CDEF的縱坐標(biāo)的范圍,可得出關(guān)于n的一元一次不等式組,解之即可得出n的取值范圍;當(dāng)點B和四邊形CDEF的中間點在邊DE上時,由四邊形CDEF的橫、縱坐標(biāo)的范圍,可得出關(guān)于n的一元一次不等式組,解之即可得出n的取值范圍.綜上,此題得解.

解:(1)如圖:點O和線段CD的中間點所組成的圖形G是線段C′D′,

由題意可知:點C′為線段OC的中點,點D′為線段OD的中點.
∵點C的坐標(biāo)為(-2,2),點D的坐標(biāo)為(12),
∴點C′的坐標(biāo)為(-1,1),點D′的坐標(biāo)為( ,1),

∴點O和線段CD的中間點所組成的圖形G即線段C′D′的縱坐標(biāo)是1,橫坐標(biāo)-1≤x≤,

∴點,中,在圖形G上的點是,

2)點A和四邊形CDEF中點形是四邊形.

各頂點的坐標(biāo)為:(0,0)、(01)、(,0)、(,1).

3)∵點B的橫坐標(biāo)為b
∴點B的坐標(biāo)為(b,2b).
當(dāng)點B和四邊形CDEF的中間點在邊EF上時,有 ,
解得:-1≤b≤0;
當(dāng)點B和四邊形CDEF的中間點在邊DE上時,有 ,
解得:1≤b≤2,
綜上所述:點B的橫坐標(biāo)b的取值范圍為-1≤b≤0 1≤b≤2

故答案為:(1,;(2)點A和四邊形CDEF中點形是四邊形,各頂點的坐標(biāo)為:(00)、(0,1)、(0)、(1);(3-1≤b≤0 1≤b≤2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖:點(1,3)在函數(shù)y=(x>0)的圖象上,矩形ABCD的邊BCx軸上,E是對角線BD的中點,函數(shù)y=(x>0)的圖象又經(jīng)過A、E兩點,點E的橫坐標(biāo)為m,解答下列問題:

(1)k的值;

(2)求點A的坐標(biāo);(用含m代數(shù)式表示)

(3)當(dāng)∠ABD=45°時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個頂點都在格點上,點A的坐標(biāo)為(2,2)請解答下列問題:

(1)畫出ABC關(guān)于y軸對稱的A1B1C1,并寫出A1的坐標(biāo).

(2)畫出ABC繞點B逆時針旋轉(zhuǎn)90°后得到的A2B2C2,并寫出A2的坐標(biāo).

(3)畫出A2B2C2關(guān)于原點O成中心對稱的A3B3C3,并寫出A3的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形的內(nèi)切圓的切點將該圓周分為5:9:10三條弧,則此三角形的最小的內(nèi)角為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB90°,∠CAB30°, AC4.5cm M是邊AC上的一個動點,連接MB,過點MMB的垂線交AB于點N 設(shè)AM=x cm,AN=y cm.(當(dāng)點M與點A或點C重合時,y的值為0

探究函數(shù)y隨自變量x的變化而變化的規(guī)律.

1 通過取點、畫圖、測量,得到了xy的幾組對應(yīng)值,如下表:

x/cm

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

y/cm

0

0.4

0.8

1.2

1.6

1.7

1.6

1.2

0

(要求:補(bǔ)全表格,相關(guān)數(shù)值保留一位小數(shù))

2)建立平面直角坐標(biāo)系xOy,描出以補(bǔ)全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;

3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)AN=AM時,AM的長度約為 cm(結(jié)果保留一位小數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一幅弦圖,后人稱其為趙爽弦圖(如圖(1)所示).圖(2)由弦圖變化得到,它是由八個全等的直角三角形拼接而成的記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1S2,S3,若EF4,則S1+S2+S3的值是(  )

A.32B.38C.48D.80

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等邊三角形ABC中,點D,E分別在邊BC,AC上,DEAB,過點EEFDE,交BC的延長線于點F

1)求∠F的度數(shù);

2)若CD4,求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB兩地被池塘隔開,小明通過下列方法測出了AB間的距離:先在AB外選一點C,然后測出AC,BC的中點M,N,并測量出MN的長為12 m,由此他就知道了A,B間的距離,有關(guān)他這次探究活動的描述錯誤的是(  )

A. AB=24 m B. MNAB C. CMN∽△CAB D. CMMA=12

【答案】D

【解析】試題分析:根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得MNAB,MN=AB,再根據(jù)相似三角形的判定解答.

試題解析:∵M(jìn)、N分別是AC,BC的中點

MNAB,MN=AB

∴AB=2MN=2×12=24m

△CMN∽△CAB

∵M(jìn)AC的中點

∴CM=MA

∴CMMA=11

故描述錯誤的是D選項.

故選D

考點:1.三角形中位線定理;2.相似三角形的應(yīng)用.

型】單選題
結(jié)束】
10

【題目】若關(guān)于的一元二次方程+x-3m=0有兩個不相等的實數(shù)根,的取值范圍是(

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=x2+bx+c的對稱軸為直線x=1,拋物線與x軸交于A、B兩點(點A在點B的左側(cè)),且AB=4,又P是拋物線上位于第一象限的點,直線APy軸交于點D,與對稱軸交于點E,設(shè)點P的橫坐標(biāo)為t.

(1)求點A的坐標(biāo)和拋物線的表達(dá)式;

(2)當(dāng)AE:EP=1:2時,求點E的坐標(biāo);

(3)記拋物線的頂點為M,與y軸的交點為C,當(dāng)四邊形CDEM是等腰梯形時,求t的值.

查看答案和解析>>

同步練習(xí)冊答案