【題目】已知:在平面直角坐標(biāo)系xOy中,點A(-1,2)在函數(shù)(x<0)的圖象上.
(1)求m的值;
(2)過點A作y軸的平行線,直線與直線交于點B,與函數(shù)(x<0)的圖象交于點C,與軸交于點D.
①當(dāng)點C是線段BD的中點時,求b的值;
②當(dāng)BC<BD時,直接寫出b的取值范圍.
【答案】(1)m= -2;(2)①b=3;②b> -3.
【解析】
(1)把A(-1,2)代入解析式即可求解;
(2)①根據(jù)題意知點B的橫坐標(biāo)為-1,點D的橫坐標(biāo)為0,由于點C是BD的中點,利用中點坐標(biāo)公式即可求得點C的橫坐標(biāo),代入中可求得點C的坐標(biāo),代入函數(shù) 中,即可求解;
②先利用①的方法求得BC=BD即點B是CD的中點時的值,觀察圖象,即可求得b的取值范圍.
(1)把A(-1,2)代入函數(shù)(x<0)中,
∴ ;
(2)① 如圖,
根據(jù)題意知:點B的橫坐標(biāo)為-1,點D的橫坐標(biāo)為0,
∵點C是BD的中點,
∴點C的橫坐標(biāo)為,
把代入函數(shù)中,得y = 4,
∴點C的坐標(biāo)為(,4),
把點C的坐標(biāo)為(,4)代入函數(shù) 中,
得:,
解得:;
② 當(dāng)點B是CD的中點時,BC=BD,
此時,點B的橫坐標(biāo)為-1,點D的橫坐標(biāo)為0,
設(shè)點C的橫坐標(biāo)為,
∴,
解得:,
把代入函數(shù)中,得y = 1,
∴點C的坐標(biāo)為(,1),
把點C的坐標(biāo)為(,1)代入函數(shù) 中,
得:,
解得:;
觀察圖象,當(dāng)時,BCBD,
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:由兩條與x軸有著相同的交點,并且開口方向相同的拋物線所圍成的封閉曲線稱為“月牙線”.如圖,拋物線C1與拋物線C2組成一個開口向上的“月牙線”,拋物線C1與拋物線C2與x軸有相同的交點M,N(點M在點N的左側(cè)),與y軸的交點分別為A,B且點A的坐標(biāo)為(0,﹣3),拋物線C2的解析式為y=mx2+4mx﹣12m,(m>0).
(1)請你根據(jù)“月牙線”的定義,設(shè)計一個開口向下.“月牙線”,直接寫出兩條拋物線的解析式;
(2)求M,N兩點的坐標(biāo);
(3)在第三象限內(nèi)的拋物線C1上是否存在一點P,使得△PAM的面積最大?若存在,求出△PAM的面積的最大值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】事業(yè)單位人員編制連進(jìn)必考,現(xiàn)一事業(yè)單位需招聘一名員工,對應(yīng)聘者甲、乙、丙從筆試、面試、體能三個方而進(jìn)行量化考核.甲、乙、丙各項得分如下表:
筆試 | 面試 | 體能 | |
甲 | 84 | 80 | 88 |
乙 | 94 | 92 | 69 |
丙 | 81 | 84 | 78 |
(1)根據(jù)三項得分的平均分,從高到低確定三名應(yīng)聘者的排名順序;
(2)該單位規(guī)定:筆試、面試、體能分分別不得低于80分,80分,70分,并按60%,30%,10%的比例計入總分.根據(jù)規(guī)定,請你說明誰將被錄用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=,AC=5,tanA=2,D是BC中點,點P是AC上一個動點,將△BPD沿PD折疊,折疊后的三角形與△PBC的重合部分面積恰好等于△BPD面積的一半,則AP的長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與直線AB交于點A(-1,0),B(4,).點D是拋物線A,B兩點間部分上的一個動點(不與點A,B重合),直線CD與y軸平行,交直線AB于點C,連接AD,BD.
(1)求拋物線的解析式;
(2)設(shè)點D的橫坐標(biāo)為m,則用m的代數(shù)式表示線段DC的長;
(3)在(2)的條件下,若△ADB的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求出當(dāng)S取最大值時的點C的坐標(biāo);
(4)當(dāng)點D為拋物線的頂點時,若點P是拋物線上的動點,點Q是直線AB上的動點,判斷有幾個位置能使以點P,Q,C,D為頂點的四邊形為平行四邊形,直接寫出相應(yīng)的點Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:關(guān)于x的方程有實數(shù)根.
(1)求m的取值范圍;
(2)若方程的根為有理數(shù),求正整數(shù)m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3,BC=5,以B為圓心BC為半徑畫弧交AD于點E,連接CE,作BF⊥CE,垂足為F,則tan∠FBC的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):如圖1,在等邊中,點為邊上一動點,交于點,將繞點順時針旋轉(zhuǎn)得到,連接.則與的數(shù)量關(guān)系是_____,的度數(shù)為______.
(2)拓展探究:如圖2,在中,,,點為邊上一動點,交于點,當(dāng)∠ADF=∠ACF=90°時,求的值.
(3)解決問題:如圖3,在中,,點為的延長線上一點,過點作交的延長線于點,直接寫出當(dāng)時的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,點A在x軸的正半軸上,點B、C在第一象限,且四邊形OABC是平行四邊形,AB=,sinB=,反比例函數(shù)的圖象經(jīng)過點C以及邊AB的中點D,則四邊形OABC的面積為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com