【題目】如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測(cè)量公園內(nèi)一棵樹(shù)DE的高度,他們?cè)谶@棵樹(shù)正前方一座樓亭前的臺(tái)階上A點(diǎn)處測(cè)得樹(shù)頂端D的仰角為30°,朝著這棵樹(shù)的方向走到臺(tái)階下的點(diǎn)C處,測(cè)得樹(shù)頂端D的仰角為60°.已知A點(diǎn)的高度AB為2m,臺(tái)階AC的坡度為1: ,且B,C,E三點(diǎn)在同一條直線上.請(qǐng)根據(jù)以上條件求出樹(shù)DE的高度(測(cè)傾器的高度忽略不計(jì)).
【答案】樹(shù)DE的高度為6米.
【解析】試題分析:由于AF⊥AB,則四邊形ABEF為矩形,設(shè)DE=x,在Rt△CDE中,CE═== ,在Rt△ABC中,得到,求出BC,在Rt△AFD中,求出AF,由AF=BC+CE即可求出x的長(zhǎng).
試題解析:∵AF⊥AB,AB⊥BE,DE⊥BE,
∴四邊形ABEF為矩形,
∴AF=BE,EF=AB=2
設(shè)DE=x,在Rt△CDE中,CE=== ,
在Rt△ABC中,
∵,AB=2,
∴BC=2,
在Rt△AFD中,DF=DE-EF=x-2,
∴AF=,
∵AF=BE=BC+CE.
∴,
解得x=6.
答:樹(shù)DE的高度為6米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】分解因式m﹣ma2的結(jié)果是( )
A.m(1+a)(1﹣a)
B.m(1+a)2
C.mm(1﹣a)2
D.(1﹣a)(1+a)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題的逆命題一定成立的是 ( )
①對(duì)頂角相等; ②同位角相等,兩直線平行;③全等三角形的周長(zhǎng)相等;④面積相等的兩個(gè)三角形全等
A. ①②③ B. ①④ C. ②④ D. ②
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小麗的家和學(xué)校在一條筆直的馬路旁,某天小麗沿著這條馬路上學(xué),先從家步行到公交站臺(tái)甲,再乘車到公交站臺(tái)乙下車,最后步行到學(xué)校(在整個(gè)過(guò)程中小麗步行的速度不變),圖中折線ABCDE表示小麗和學(xué)校之間的距離y(米)與她離家時(shí)間x(分鐘)之間的函數(shù)關(guān)系.
(1)求小麗步行的速度及學(xué)校與公交站臺(tái)乙之間的距離;
(2)當(dāng)8≤x≤15時(shí),求y與x之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,下列條件中,不能證明△ABC≌△DCB的是( )
A.AB=CD,AC=BD
B.AB=CD,∠ABC=∠BCD
C.∠ABC=∠DCB,∠A=∠D
D.AB=CD,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)購(gòu)進(jìn)一種每件價(jià)格為100元的新商品,在商場(chǎng)試銷發(fā)現(xiàn):銷售單價(jià)x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:
(1)求出y與x之間的函數(shù)關(guān)系式;
(2)寫(xiě)出每天的利潤(rùn)W與銷售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場(chǎng)負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來(lái)保證每天獲得的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將多項(xiàng)式﹣5a2bc+3ab2﹣abc各項(xiàng)提公因式后,另一個(gè)因式是( 。
A.5ac﹣3ab+c
B.5bc﹣3b+c
C.﹣5ac+3b+c
D.﹣5bc+3b+c
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,AB=AC,∠BAC=90°,O為BC的中點(diǎn)。
(1)寫(xiě)出點(diǎn)O到△ABC的三個(gè)頂點(diǎn)A、B、C的距離的大小關(guān)系并說(shuō)明理由;
(2)如果點(diǎn)M、N分別在線段AB、AC上移動(dòng),在移動(dòng)中保持AN=BM,請(qǐng)判斷△OMN的形狀,并證明你的結(jié)論。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com