如圖,P是等邊△ABC內(nèi)部一點(diǎn),PC=3,PA=4,PB=5.求AC2

【答案】分析:首先將△BCP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得△ACQ,連接PQ.再過A作CP的延長(zhǎng)線的垂線AD,垂足為D,易證得△PCQ是等邊三角形,△APQ是直角三角形,則可求得∠APC的度數(shù),然后可求得∠APD的度數(shù),在Rt△APD中,即可求得AD與CD的長(zhǎng),繼而求得AC2
解答:解:將△BCP繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60°得△ACQ,連接PQ.再過A作CP的延長(zhǎng)線的垂線AD,垂足為D,
∴AQ=PB=5,CQ=PC,∠PCQ=60°,
∴△PCQ是等邊三角形,
∴PQ=PC=3,∠QPC=60°,
在△PAQ中,∵PA=4,AQ=5,PQ=3,
∴AQ2=PA2+PQ2,
∴∠APQ=90°,
∴∠APC=∠APQ+∠QPC=150°,
∴∠APD=30°,
在Rt△APD中,AD=PA=2,PD=AP•cos30°=2,
則CD=PC+PD=3+2,
在Rt△ACD中,AC2=AD2+CD2=4+(3+22=25+12
點(diǎn)評(píng):此題考查了等邊三角形的判定與性質(zhì)、勾股定理的逆定理以及直角三角形的性質(zhì).此題難度較大,注意掌握輔助線的作法,注意數(shù)形結(jié)合思想的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,點(diǎn)D是線段BC上的一個(gè)動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B、C重合),△ADE是以AD為邊的等邊三角形,過點(diǎn)E作BC的平行線,分別交AB、AC于點(diǎn)F、G,連接BE.
(1)若△ABC的面積是1,則△ADE的最小面積為
3
4
3
4
;
(2)求證:△AEB≌ADC;
(3)探究四邊形BCGE是怎樣特殊的四邊形?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點(diǎn)D在AC上,連結(jié)BD并延長(zhǎng)與CE交于點(diǎn)E.
(1)直接寫出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,P為△ABC內(nèi)任意一點(diǎn),PE∥AB,PF∥AC.那么,△PEF是什么三角形?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC是等邊三角形,D是AC的中點(diǎn),F(xiàn)為邊AB上一動(dòng)點(diǎn),AF=nBF,E為直線BC上一點(diǎn),且∠EDF=120°.
 
(1)如圖1,當(dāng)n=2時(shí),求
CE
CD
=
1
3
1
3

(2)如圖2,當(dāng)n=
1
3
時(shí),求證:CD=2CE;
(3)如圖3,過點(diǎn)D作DM⊥BC于M,當(dāng)
n=3
n=3
時(shí),C點(diǎn)為線段EM的中點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案