【題目】如圖,AB是⊙O的直徑,弦CD⊥AB,∠CDB=30°,CD=2 ,則陰影部分圖形的面積為(
A.4π
B.2π
C.
D.

【答案】C
【解析】解:如圖,假設線段CD、AB交于點E.
∵AB是⊙O的直徑,弦CD⊥AB,
∴CE=ED=
又∵∠CDB=30°,
∴∠COE=2∠CDB=60°,∠OCE=30°,
∴OE=CEcot60°= × =1,OC=2OE=2,
∴S陰影=S扇形OCB﹣SCOE+SBED
= OEEC+ BEED
= π﹣ OEEC+ OEEC
= π,
故選C.
【考點精析】本題主要考查了垂徑定理和圓周角定理的相關知識點,需要掌握垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條。豁旤c在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:( 2﹣6sin30°﹣( 0+ +| |

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點,點E、F分別在AC、BC邊上運動(點E不與點A、C重合),且保持AE=CF,連接DE、DF、EF.在此運動變化的過程中,請?zhí)骄浚?
(1)求證:△DFE是等腰直角三角形;
(2)四邊形CEDF的面積是否發(fā)生變化?若不變化,請求出面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知數(shù)軸上三點M,O,N對應的數(shù)分別為-1,0,3P為數(shù)軸上任意一點,其對應的數(shù)為x

1MN的長為 ;

2如果點P到點MN的距離相等,那么x的值是 ;

3數(shù)軸上是否存在點P,使點P到點M、N的距離之和是8?若存在,直接寫出x的值若不存在,請說明理由

4如果點P以每分鐘1個單位長度的速度從點O向左運動,同時點M和點N分別以每分鐘2個單位長度和每分鐘3個單位長度的速度也向左運動.設t分鐘時點P到點M、N的距離相等,t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y= x2+bx+c經(jīng)過△ABC的三個頂點,其中點A(0,1),點B(﹣9,10),AC//x軸,點P是直線AC下方拋物線上的動點.

(1)求拋物線的解析式;
(2)過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;
(3)當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個大燒杯中裝有一個小燒杯,在小燒杯中放入一個浮子(質(zhì)量非常輕的空心小圓球)后再往小燒杯中注水,水流的速度恒定不變,小燒杯被注滿后水溢出到大燒杯中,浮子始終保持在容器的正中間.用x表示注水時間,用y表示浮子的高度,則用來表示y與x之間關系的選項是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】九年級教師對試卷講評課中學生參與的深度與廣度進行評價調(diào)查,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初中學生的參與情況,繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:

(1)在這次評價中,一共抽查了名學生;
(2)在扇形統(tǒng)計圖中,項目“主動質(zhì)疑”所在的扇形的圓心角的度數(shù)為度;
(3)請將條形統(tǒng)計圖補充完整;
(4)如果全市有6000名九年級學生,那么在試卷評講課中,“獨立思考”的約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列式并計算

(1)求+1.2的相反數(shù)與﹣1.3的絕對值的和.

(2)42的和的相反數(shù).

(3)巴黎和北京的時差是﹣7個小時,李伯伯于北京時間929號早上8:00搭乘飛往巴黎,飛行時間約11個小時,則李伯伯到達巴黎的時間是   .(填月日時)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,對角線ACBD相交于點O,在AB上有一點E,連接CE,過點BBC的垂線和CE的延長線交于點F,連接AF,ABF=FCB,F(xiàn)C=AB,若FB=1,AF=,則BD=_____

查看答案和解析>>

同步練習冊答案