【題目】如圖,是拋物線形拱橋,當(dāng)拱頂離水面2米時(shí),水面寬4米.若水面下降1米,則水面寬度將增加多少米?

【答案】解:建立平面直角坐標(biāo)系,設(shè)橫軸x通過AB,縱軸y通過AB中點(diǎn)O且通過C點(diǎn),則通過畫圖可得知O為原點(diǎn),
拋物線以y軸為對(duì)稱軸,且經(jīng)過A,B兩點(diǎn),OA和OB可求出為AB的一半2米,拋物線頂點(diǎn)C坐標(biāo)為(0,2),
通過以上條件可設(shè)頂點(diǎn)式y(tǒng)=ax2+2,其中a可通過代入A點(diǎn)坐標(biāo)(﹣2,0),
到拋物線解析式得出:a=﹣0.5,所以拋物線解析式為y=﹣0.5x2+2,
當(dāng)水面下降1米,通過拋物線在圖上的觀察可轉(zhuǎn)化為:
當(dāng)y=﹣1時(shí),對(duì)應(yīng)的拋物線上兩點(diǎn)之間的距離,也就是直線y=﹣1與拋物線相交的兩點(diǎn)之間的距離,
可以通過把y=﹣1代入拋物線解析式得出:
﹣1=﹣0.5x2+2,
解得:x=±
所以水面寬度增加到2 米,
比原先的寬度當(dāng)然是增加了(2 ﹣4)米.

【解析】根據(jù)已知得出直角坐標(biāo)系,進(jìn)而求出二次函數(shù)解析式,再根據(jù)通過把y=﹣1代入拋物線解析式得出水面寬度,即可得出答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】百貨商店服裝專柜在銷售中發(fā)現(xiàn):某商品的進(jìn)價(jià)為每件40元.當(dāng)售價(jià)為每件60元時(shí),每星期可賣出300件,現(xiàn)需降價(jià)處理,且經(jīng)市場(chǎng)調(diào)查:每降價(jià)1元,每星期可多賣出20件.為占有市場(chǎng)份額,在確保盈利的前提下.
(1)降價(jià)多少元時(shí),每星期盈利為6125元.
(2)降價(jià)多少元時(shí),每星期盈利額最大,最大盈利額是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】未成年人思想道德建設(shè)越來越受到社會(huì)的關(guān)注,遼陽(yáng)青少年研究所隨機(jī)調(diào)查了本市一中學(xué)100名學(xué)生寒假中花零花錢的數(shù)量(錢數(shù)取整數(shù)元),以便引導(dǎo)學(xué)生樹立正確的消費(fèi)觀.根據(jù)調(diào)查數(shù)據(jù)制成了頻

分組

頻數(shù)

頻率

0.550.5

   

0.1

50.5   

20

0.2

100.5150.5

   

   

   200.5

30

0.3

200.5250.5

10

0.1

率分布表和頻率分布直方圖(如圖)

(1)補(bǔ)全頻率分布表;

(2)在頻率分布直方圖中,長(zhǎng)方形ABCD的面積是   ;這次調(diào)查的樣本容量是   ;

(3)研究所認(rèn)為,應(yīng)對(duì)消費(fèi)150元以上的學(xué)生提出勤儉節(jié)約的建議.試估計(jì)應(yīng)對(duì)該校1000名學(xué)生中約多少名學(xué)生提出這項(xiàng)建議.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀資料:
如圖1,在平面直角坐標(biāo)系xOy中,A,B兩點(diǎn)的坐標(biāo)分別為A(x1 , y1),B(x2 , y2),由勾股定理得AB2=|x2﹣x1|2+|y2﹣y1|2 , 所以A,B兩點(diǎn)間的距離為AB=
我們知道,圓可以看成到圓心的距離等于半徑的點(diǎn)的集合,如圖2,在平面直角坐標(biāo)系xOy中,A (x,y)為圓上任意一點(diǎn),則點(diǎn)A到原點(diǎn)的距離的平方為OA2=|x﹣0|2+|y﹣0|2 , 當(dāng)⊙O的半徑OA為r時(shí),⊙O的方程可寫為:x2+y2=r2
問題拓展:
如果圓心坐標(biāo)為P (a,b),半徑為r,那么⊙P的方程可以寫為。▁﹣a)2+(y﹣b)2=r2 
綜合應(yīng)用:
如圖3,⊙P與x軸相切于原點(diǎn)O,P點(diǎn)坐標(biāo)為(0,6),A是⊙P上一點(diǎn),連接OA,使∠POA=30°,作PD⊥OA,垂足為D,延長(zhǎng)PD交x軸于點(diǎn)B,連接AB.
①證明AB是⊙P的切線;
②是否存在到四點(diǎn)O,P,A,B距離都相等的點(diǎn)Q?若存在,求Q點(diǎn)坐標(biāo),并寫出以點(diǎn)Q為圓心,OQ長(zhǎng)為半徑的⊙Q的方程;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:

把兩個(gè)相同的數(shù)連接在一起就得到一個(gè)新數(shù),我們把它稱為“連接數(shù)”,例如:234234,3939…等,都是連接數(shù),其中,234234稱為六位連接數(shù),3939稱為四位連接數(shù).

(1)請(qǐng)寫出一個(gè)六位連接數(shù)   ,它   (填“能”或“不能”)被13整除.

(2)是否任意六位連接數(shù),都能被13整除,請(qǐng)說明理由.

(3)若一個(gè)四位連接數(shù)記為M,它的各位數(shù)字之和的3倍記為N,M﹣N的結(jié)果能被13整除,這樣的四位連接數(shù)有幾個(gè)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=﹣2x2+(m+9)x﹣6的對(duì)稱軸是x=2.
(1)求拋物線表達(dá)式和頂點(diǎn)坐標(biāo);
(2)將該拋物線向右平移1個(gè)單位,平移后的拋物線與原拋物線相交于點(diǎn)A,求點(diǎn)A的坐標(biāo);
(3)拋物線y=﹣2x2+(m+9)x﹣6與y軸交于點(diǎn)C,點(diǎn)A關(guān)于平移后拋物線的對(duì)稱軸的對(duì)稱點(diǎn)為點(diǎn)B,兩條拋物線在點(diǎn)A、C和點(diǎn)A、B之間的部分(包含點(diǎn)A、B、C) 記為圖象M.將直線y=2x﹣2向下平移b(b>0)個(gè)單位,在平移過程中直線與圖象M始終有兩個(gè)公共點(diǎn),請(qǐng)你寫出b的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小剛為班級(jí)購(gòu)買了一、二、三等獎(jiǎng)的獎(jiǎng)品,已知一等獎(jiǎng)獎(jiǎng)品6元,二等獎(jiǎng)獎(jiǎng)品4元,三等獎(jiǎng)獎(jiǎng)品2元,其中獲獎(jiǎng)人數(shù)的分配情況如圖,則小剛購(gòu)買獎(jiǎng)品費(fèi)用的平均數(shù)和眾數(shù)分別為( 。%

A. 2元,3 B. 2.5元,2.5 C. 3元,2 D. 3元,3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,梯形ABCD中,E、F分別在邊AB、CD上,EFBC,AEBE=12,對(duì)角線ACEFG,若BC=10cm,AD=6cm,則EF的長(zhǎng)等于______ cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】新農(nóng)村社區(qū)改造中,有一部分樓盤要對(duì)外銷售,某樓盤共23層,銷售價(jià)格如下:第八層樓房售價(jià)為4000/2,從第八層起每上升一層,每平方米的售價(jià)提高50元;反之,樓層每下降一層,每平方米的售價(jià)降低30元,已知該樓盤每套樓房面積均為1202

若購(gòu)買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:

方案一:降價(jià)8%,另外每套樓房贈(zèng)送a元裝修基金;

方案二:降價(jià)10%,沒有其他贈(zèng)送.

1)請(qǐng)寫出售價(jià)y(元/2)與樓層x1≤x≤23,x取整數(shù))之間的函數(shù)關(guān)系式;

2)老王要購(gòu)買第十六層的一套樓房,若他一次性付清購(gòu)房款,請(qǐng)幫他計(jì)算哪種優(yōu)惠方案更加合算.

查看答案和解析>>

同步練習(xí)冊(cè)答案