【題目】點P是曲線C1:(x﹣2)2+y2=4上的動點,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,以極點O為中心,將點P逆時針旋轉(zhuǎn)90°得到點Q,設(shè)點Q的軌跡方程為曲線C2
(1)求曲線C1 , C2的極坐標方程;
(2)射線θ= 與曲線C1 , C2分別交于A,B兩點,定點M(2,0),求△MAB的面積.

【答案】
(1)解:曲線C1:(x﹣2)2+y2=4上,把互化公式代入可得:曲線C1的極坐標方程為ρ=4cosθ.

設(shè)Q(ρ,θ),則 ,則有

所以,曲線C2的極坐標方程為ρ=4sinθ


(2)解:M到射線 的距離為 , ,


【解析】(1)曲線C1:(x﹣2)2+y2=4上,把互化公式代入可得:曲線C1的極坐標方程.設(shè)Q(ρ,θ),則 ,代入即可得出曲線C2的極坐標方程.(2)M到射線 的距離為 , ,即可得出面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點E,F(xiàn)在函數(shù)y= 的圖象上,直線EF分別與x軸、y軸交于點A、B,且BE:BF=1:3,則△EOF的面積是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數(shù)g(x)=sin2x的圖象,當x1 , x2滿足時,|f(x1)﹣g(x2)|=2, ,則φ的值為(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC= ,點E在AD上,且AE=2ED.
(Ⅰ)已知點F在BC上,且CF=2FB,求證:平面PEF⊥平面PAC;
(Ⅱ)若△PBC的面積是梯形ABCD面積的 ,求點E到平面PBC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對應(yīng)的邊分別為a,b,c,a﹣b=bcosC.
(1)求證:sinC=tanB;
(2)若a=1,C為銳角,求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線ax+by+c=0與圓O:x2+y2=16相交于兩點M、N,若c2=a2+b2 , P為圓O上任意一點,則 的取值范圍是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x|+|x﹣3|.
(1)解關(guān)于x的不等式f(x)﹣5≥x;
(2)設(shè)m,n∈{y|y=f(x)},試比較mn+4與2(m+n)的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=m﹣|x﹣1|,(m>0),且f(x+1)≥0的解集為[﹣3,3]. (Ⅰ)求m的值;
(Ⅱ)若正實數(shù)a,b,c滿足 ,求證:a+2b+3c≥3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三角形△ABC的三邊長構(gòu)成公差為2的等差數(shù)列,且最大角的正弦值為 ,則這個三角形的周長為(
A.15
B.18
C.21
D.24

查看答案和解析>>

同步練習(xí)冊答案