精英家教網 > 初中數學 > 題目詳情

【題目】如圖,兩個同心圓,大圓半徑為5cm,小圓的半徑為3cm,若大圓的弦AB與小圓相交,則弦AB的取值范圍是   

【答案】8AB≤10。

【解析】

首先要弄清楚AB在什么時候最大,什么時候最小.當AB與小圓相切時有一個公共點,此時可知AB最小;當AB經過同心圓的圓心時,弦AB最大且與小圓相交有兩個公共點,此時AB最大,由此可以確定所以AB的取值范圍:

如圖,當AB與小圓相切時有一個公共點D,連接OA,OD,可得OD⊥AB,

∴DAB的中點,即ADBD。

Rt△ADO中,OD3,OA5,∴AD4。∴AB2AD8。

AB經過同心圓的圓心時,弦AB最大且與小圓相交有兩個公共點,此時AB10。

∴AB的取值范圍是8AB≤10

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知如圖,圓錐的母線長6cm,底面半徑是3cm,在B處有一只螞蟻,在AC中點P處有一顆米粒,螞蟻從B爬到P處的最短距離是(  )

A. 3cm B. 3cm C. 9cm D. 6cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,ADBCD,下列條件①∠B+DAC=90°;②∠B=DAC;=AB2=BDBC . 其中一定能夠判定ABC是直角三角形的有( ).

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知矩形,在上取兩點左邊),以為邊作等邊三角形,使頂點上.

(1)PEF的邊長;

(2)PEF的邊在線段上移動.分別交于點求證:

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】周末,小華和小亮想用所學的數學知識測量家門前小河的寬.測量時,他們選擇了河對岸邊的一棵大樹,將其底部作為點A,在他們所在的岸邊選擇了點B,使得AB與河岸垂直,并在B點豎起標桿BC,再在AB的延長線上選擇點D豎起標桿DE,使得點E與點CA共線.

已知:CBAD,EDAD,測得BC=1m,DE=1.5m,BD=8.5m.測量示意圖如圖所示.請根據相關測量信息,求河寬AB

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,E為BC上一點,以CE為直徑作O,AB與O相切于點D,連接CD,若BE=OE=2.

(1)求證:A=2DCB;

(2)求圖中陰影部分的面積(結果保留π和根號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,A是半徑為6cm的⊙O上的定點,動點PA出發(fā),以πcm/s的速度沿圓周按順時針方向運動,當點P回到A時立即停止運動.設點P運動時間為t(s);

(1)當t=6s時,∠POA的度數是________;

(2)當t為多少時,∠POA=120°;

(3)如果點BOA延長線上的一點,且AB=AO,問t為多少時,POB為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知AC=DC,ACDC,直線MN經過點A,作DBMN,垂足為B,連接CB.

(1)直接寫出∠D與∠MAC之間的數量關系;

(2)①如圖1,猜想AB,BDBC之間的數量關系,并說明理由;

②如圖2,直接寫出AB,BDBC之間的數量關系;

(3)MN繞點A旋轉的過程中,當∠BCD=30°,BD=時,直接寫出BC的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,O的直徑AB2,AMBN是它的兩條切線,DEOE,交AMD,交BNC.設ADxBCy

(1)求證:AMBN;

(2)y關于x的關系式;

(3)求四邊形ABCD的面積S,并證明:S≥2

查看答案和解析>>

同步練習冊答案