【題目】在生活中,有很多函數(shù)并不一定存在解析式,對于這樣的函數(shù),我們可以通過列表和圖象來對它可能存在的性質(zhì)進行探索,例如下面這樣一個問題:

已知yx的函數(shù),下表是yx的幾組對應值.

x

5

4

3

2

0

1

2

3

4

5

y

1.969

1.938

1.875

1.75

1

0

2

1.5

0

2.5

小孫同學根據(jù)學習函數(shù)的經(jīng)驗,利用上述表格反映出的yx之間的變化規(guī)律,對該函數(shù)的圖象與性質(zhì)進行了探究.

下面是小孫同學的探究過程,請補充完整;

1)如圖,在平面之間坐標系xOy中,描出了以上表中各對應值為坐標的點,根據(jù)描出的點,畫出函數(shù)的圖象:

2)根據(jù)畫出的函數(shù)圖象回答:

x=﹣1時,對應的函數(shù)值y的為   

若函數(shù)值y0,則x的取值范圍是   

寫出該函數(shù)的一條性質(zhì)(不能與前面已有的重復):   

【答案】1)詳見解析;(2①1.35(答案不唯一);x1x4;函數(shù)有最小值(答案不唯一).

【解析】

1)通過描點法畫出函數(shù)圖象;

2)直接從圖象中讀取相關數(shù)值即可.

1)通過描點畫出如下函數(shù)圖象:

2)答案為近似值,不唯一,

x=﹣1時,從圖象可以看出:y1.35;

函數(shù)值y0,則x1x4

函數(shù)有最小值(答案不唯一);

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=k1x+bk1≠0)與反比例函數(shù)y=k2≠0)的圖象交于A-1-4)和點B4,m

1)求這兩個函數(shù)的解析式;

2)已知直線ABy軸于點C,點Pn,0)在x軸的負半軸上,若BCP為等腰三角形,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了掌握八年級數(shù)學考試卷的命題質(zhì)量與難度系數(shù),命題組教師赴外地選取一個水平相當?shù)陌四昙壈嗉夁M行預測,將考試成績分布情況進行處理分析,制成頻數(shù)分布表如下(成績得分均為整數(shù)):

組別

成績分組

頻數(shù)頻率

頻數(shù)

1

2

0.05

2

4

0.10

3

0.2

4

10

0.25

5

6

6

0.15

合計

40

1.00

根據(jù)表中提供的信息解答下列問題:

(1)頻數(shù)分布表中的 ,

(2)已知全區(qū)八年級共有200個班(平均每班40人),用這份試卷檢測,108分及以上為優(yōu)秀,預計優(yōu)秀的人數(shù)約為 ,72分及以上為及格,預計及格的人數(shù)約為 ,及格的百分比約為 ;

(3)補充完整頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖為二次函數(shù)yax2+bx+c的圖象,在下列說法中①ac0;②方程ax2+bx+c0的根是x1=﹣1,x23;③a+b+c0;④當x1時,yx的增大而增大,正確的是( )

A. ①③B. ②④C. ①②④D. ②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線yx2+bx+c的對稱軸為x1,且其頂點在直線y=﹣2x2上.

1)求拋物線的頂點坐標;

2)求拋物線的解析式;

3)在給定的平面直角坐標系中畫出這個二次函數(shù)的圖象;

4)當﹣1x4時,直接寫出y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有三個大小一樣的正六邊形,可按下列方式進行拼接:

方式1:如圖1

方式2:如圖2;

若有四個邊長均為1的正六邊形,采用方式1拼接,所得圖案的外輪廓的周長是_______.個邊長均為1的正六邊形,采用上述兩種方式的一種或兩種方式混合拼接,若得圖案的外輪廓的周長為18,則的最大值為__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線yxxb)﹣y軸相交于A點,與x軸相交于B、C兩點,且點C在點B的右側,設拋物線的頂點為P

1)若點B與點C關于直線x1對稱,求b的值;

2)若OBOA,求△BCP的面積;

3)當﹣1x1時,該拋物線上最高點與最低點縱坐標的差為h,求出hb的關系;若h有最大值或最小值,直接寫出這個最大值或最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC為圓O的直徑,弦AD的延長線與過點C的切線交于點B,EBC中點,AC= ,BC=4.

1)求證:DE為圓O的切線;

2)求陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,函數(shù)(x>0)(x>0)的圖象分別是.設點P上,PAy軸交于點APBx軸,交于點B,PAB的面積為(

A. B. C. D.

查看答案和解析>>

同步練習冊答案