【題目】如圖,在矩形ABCD中,AB=2,AD=6,E.F分別是線段AD,BC上的點(diǎn),連接EF,使四邊形ABFE為正方形,若點(diǎn)G是AD上的動點(diǎn),連接FG,將矩形沿FG折疊使得點(diǎn)C落在正方形ABFE的對角線所在的直線上,對應(yīng)點(diǎn)為P,則線段AP的長為 .
【答案】4或4﹣2
【解析】解:如圖1所示:
由翻折的性質(zhì)可知PF=CF=4,
∵ABFE為正方形,邊長為2,
∴AF=2 .
∴PA=4﹣2 .
如圖2所示:
由翻折的性質(zhì)可知PF=FC=4.
∵ABFE為正方形,
∴BE為AF的垂直平分線.
∴AP=PF=4.
所以答案是:4或4﹣2 .
【考點(diǎn)精析】通過靈活運(yùn)用矩形的性質(zhì)和翻折變換(折疊問題),掌握矩形的四個(gè)角都是直角,矩形的對角線相等;折疊是一種對稱變換,它屬于軸對稱,對稱軸是對應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和角相等即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直角三角形斜邊上的中線把直角三角形分成的兩個(gè)三角形的關(guān)系是( )
A. 形狀相同 B. 周長相等 C. 面積相等 D. 全等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,點(diǎn)D是邊BC的中點(diǎn),點(diǎn)E是邊AB上的任意一點(diǎn)(點(diǎn)E不與點(diǎn)B重合),沿DE翻折△DBE使點(diǎn)B落在點(diǎn)F處,連接AF,則線段AF的長取最小值時(shí),BF的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為進(jìn)一步提升企業(yè)產(chǎn)品競爭力,某企業(yè)加大了科研經(jīng)費(fèi)的投入,2016年該企業(yè)投入科研經(jīng)費(fèi)5000萬元,2018年投入科研經(jīng)費(fèi)7200萬元,假設(shè)該企業(yè)這兩年投入科研經(jīng)費(fèi)的年平均增長率相同.
求這兩年該企業(yè)投入科研經(jīng)費(fèi)的年平均增長率.
若該企業(yè)科研經(jīng)費(fèi)的投入還將保持相同的年平均增長率,請你預(yù)算2020年該企業(yè)投入科研經(jīng)費(fèi)多少萬元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線AB上有一點(diǎn)P,點(diǎn)M、N分別為線段PA、PB的中點(diǎn),AB=14.
(1)若點(diǎn)P在線段AB上,且AP=8,求線段MN的長度;
(2)若點(diǎn)P在直線AB上運(yùn)動,設(shè)AP=x,BP=y,請分別計(jì)算下面情況時(shí)MN的長度:
①當(dāng)P在AB之間(含A或B);
②當(dāng)P在A左邊;
③當(dāng)P在B右邊;
你發(fā)現(xiàn)了什么規(guī)律?
(3)如圖2,若點(diǎn)C為線段AB的中點(diǎn),點(diǎn)P在線段AB的延長線上,下列結(jié)論:①的值不變;②的值不變,請選擇一個(gè)正確的結(jié)論并求其值.
圖1
,
圖2
,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某工廠貨物傳送帶的平面示意圖,為提高傳送過程的安全性,工廠計(jì)劃改造傳動帶與地面的夾角,使其AB的坡角由原來的43°改為30°.已知原傳送帶AB長為5米.求新舊貨物傳送帶著地點(diǎn)B、C之間相距多遠(yuǎn)?(結(jié)果保留整數(shù),參考數(shù)據(jù):sin43°≈0.68,cos43°≈0.73,tan43°≈0.93, ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列說法不正確的是( )
A.b2﹣4ac>0
B.a>0
C.c>0
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某樓盤要對外銷售該樓盤共23層,銷售價(jià)格如下:第八層樓房售價(jià)為4000元米,從第八層起每上升一層,每平方米的售價(jià)提高50元;反之,樓層每下降一層,每平方米的售價(jià)降低30元,
請寫出售價(jià)元米與樓層x取整數(shù)之間的函數(shù)關(guān)系式.
已知該樓盤每套樓房面積均為100米,若購買者一次性付清所有房款,開發(fā)商有兩種優(yōu)惠方案:
方案一:降價(jià),另外每套樓房總價(jià)再減a元;
方案二:降價(jià).
老王要購買第十六層的一套樓房,若他一次性付清購房款,請幫他計(jì)算哪種優(yōu)惠方案更加合算.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ABE≌△ADC≌△ABC,若∠1∶∠2∶∠3=28∶5∶3,則∠α的度數(shù)為( )
A. 80° B. 100° C. 60° D. 45°
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com