【題目】如圖,ABC內(nèi)接于⊙OBAC=120°,ABAC,BD為⊙O的直徑,AD=6,則BC________

【答案】6

【解析】

由已知可證∠BDA=30°;根據(jù)BD⊙O的直徑,可證∠BAD=90°,得∠DBC=30°,即∠DBA=60°,所以BC=AD=6

解:連接CD

∵△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC

∴∠CBA=∠BCA=30°

∴∠BDA=∠ACB=30°

∵BD⊙O的直徑,

∴∠BAD=90°,∠BDA=30°,

∴∠DBC=90°-30°-30°=30°,

∴∠DBA=60°,∠BDC=60°

∴BC=AD=6

本題重點(diǎn)考查了同弧所對(duì)的圓周角相等、直徑所對(duì)的圓周角為直角及解直角三角形的知識(shí).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列材料,然后解決問(wèn)題:和、差、倍、分等問(wèn)題中有著廣泛的應(yīng)用,

截長(zhǎng)法與補(bǔ)短法在證明線段的和、差、倍、分等問(wèn)題中有著廣泛的應(yīng)用.具體的做法是在某條線段上截取一條線段等于某特定線段,或?qū)⒛硹l線段延長(zhǎng),使之與某特定線段相等,再利用全等三角形的性質(zhì)等有關(guān)知識(shí)來(lái)解決數(shù)學(xué)問(wèn)題.

1)如圖1,在ABC中,若AB=12,AC=8,求BC邊上的中線AD的取值范圍.

解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE,把AB、AC2AD集中在ABE中.利用三角形三邊的關(guān)系即可判斷中線AD的取值范圍是 ;

2)問(wèn)題解決:

如圖2,在四邊形ABCD中,AB=AD,∠ABC+ADC=180°,E、F分別是邊BC,邊CD上的兩點(diǎn),且∠EAF=BAD,求證:BE+DF=EF

3)問(wèn)題拓展:

如圖3,在ABC中,∠ACB=90°,∠CAB=60°,點(diǎn)DABC外角平分線上一點(diǎn),DEACCA延長(zhǎng)線于點(diǎn)EFAC上一點(diǎn),且DF=DB.求證:AC-AE=AF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC,A=,B=,CDAB邊上的高;CE是∠ACB的平分線,DFCEF,求∠BCE和∠CDF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,∠ABC、∠ACB的角平分線交于點(diǎn)O,過(guò)O點(diǎn)作MNBC分別交AB、ACM、N兩點(diǎn).AB7,AC8,CB9,則AMN的周長(zhǎng)是(

A.14B.16C.17D.15

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等邊三角形ABC中,AECD,AD、BE交于P點(diǎn),BQADQ,求證:

(1) BP2PQ

(2) PC,若BPPC,求的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PA,PB是⊙O的切線,A,B為切點(diǎn),AC是⊙O的直徑,AC,PB的延長(zhǎng)線相交于點(diǎn)D.

(1)若∠1=20°,求∠APB的度數(shù).

(2)當(dāng)∠1為多少度時(shí),OPOD?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)N(0,6),點(diǎn)Mx軸負(fù)半軸上,ON3OM.A為線段MN上一點(diǎn),ABx軸,垂足為點(diǎn)BACy軸,垂足為點(diǎn)C.

(1)寫出點(diǎn)M的坐標(biāo);

(2)求直線MN的表達(dá)式;

(3)若點(diǎn)A的橫坐標(biāo)為-1,求矩形ABOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我省某地區(qū)為了了解2016年初中畢業(yè)生畢業(yè)去向,對(duì)部分九年級(jí)學(xué)生進(jìn)行了抽樣調(diào)查,就九年級(jí)學(xué)生畢業(yè)后的四種去向:A.讀普通高中;B.讀職業(yè)高中;C.直接進(jìn)入社會(huì)就業(yè);D.其他(如出國(guó)等)進(jìn)行數(shù)據(jù)統(tǒng)計(jì),并繪制了兩幅不完整的統(tǒng)計(jì)圖(如圖1,如圖2)

(1)填空:該地區(qū)共調(diào)查了 名九年級(jí)學(xué)生;

(2)將兩幅統(tǒng)計(jì)圖中不完整的部分補(bǔ)充完整;

(3)若該地區(qū)2016年初中畢業(yè)生共有3500人,請(qǐng)估計(jì)該地區(qū)今年初中畢業(yè)生中讀普通高中的學(xué)生人數(shù);

(4)老師想從甲,乙,丙,丁4位同學(xué)中隨機(jī)選擇兩位同學(xué)了解他們畢業(yè)后的去向情況,請(qǐng)用畫樹狀圖或列表的方法求選中甲同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知,點(diǎn)分別在射線上移動(dòng),的平分線與的外角平分線交于點(diǎn).

1)當(dāng)時(shí), .

2)請(qǐng)你猜想:隨著兩點(diǎn)的移動(dòng),的度數(shù)大小是否變化?請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案