【題目】已知函數(shù)的關(guān)系式是L1:y=kx2+(k﹣2)x﹣2
(1)下列說法中正確的序號有 :
①當(dāng)k=1時,其頂點坐標(biāo)為(,);
②當(dāng)k=2時,二次函數(shù)的圖象關(guān)于y軸對稱;
③無論k為何非零值,二次函數(shù)都經(jīng)過(﹣1,0)和(0,﹣2);
(2)求證:無論k為何值時,函數(shù)圖象與x軸總有交點;
(3)已知二次函數(shù)L1的圖象與x軸相交于點A、B,頂點為P,若k>0,且△ABP為等邊三角形,求k的值.
【答案】(1)②③;(2)見解析;(3)2﹣2.
【解析】
試題分析:(1)當(dāng)k=1時,把y=x2﹣x﹣2配成頂點式即可對①解析判斷;當(dāng)k=2時,y=2x2﹣2,拋物線的對稱軸為y軸,則可對②解析判斷;根據(jù)二次函數(shù)圖象上點的坐標(biāo)特征對③解析判斷;
(2)分類討論:當(dāng)k=0時,原函數(shù)為一次函數(shù)y=﹣2x﹣2,則圖象一定與x軸有一個交點;當(dāng)k≠0時,利用判別式的意義可判斷二次函數(shù)圖象與x軸有交點,所以無論k為何值時,函數(shù)圖象與x軸總有交點;
(3)利用拋物線與x軸的交點問題,解方程kx2+(k﹣2)x﹣2=0可得A(,0),B(﹣1,0),頂點P的坐標(biāo)為( ,﹣),當(dāng)k>0時,AB=,如圖1,作DE⊥x軸于E,根據(jù)等邊三角形的性質(zhì)得DE=AB,即 =×,解得k1=﹣2(舍去),k2=2﹣2,所以k的值為2﹣2.
(1)解:當(dāng)k=1時,y=x2﹣x﹣2=(x﹣)2﹣,此時頂點坐標(biāo)為(,﹣),所以①錯誤;
當(dāng)k=2時,y=2x2﹣2,則拋物線的對稱軸為y軸,所以②正確;
當(dāng)x=﹣1時,y=kx2+(k﹣2)x﹣2=k﹣k+2﹣2=0;當(dāng)x=0時,y=kx2+(k﹣2)x﹣2=﹣2,所以無論k為何非零值,二次函數(shù)都經(jīng)過(﹣1,0)和(0,﹣2),所以③正確;
故答案為:②③;
(2)證明:當(dāng)k=0時,一次函數(shù)y=﹣2x﹣2與x軸有一個交點(﹣1,0);
當(dāng)k≠0時,△=(k﹣2)2﹣4k(﹣2)=(k+2)2≥0,此二次函數(shù)圖象與x軸有交點,
所以無論k為何值時,函數(shù)圖象與x軸總有交點;
(3)解:當(dāng)y=0時,kx2+(k﹣2)x﹣2=0,解得x1=﹣1,x2=,
設(shè)A(,0),B(﹣1,0),頂點P的坐標(biāo)為(,﹣),
AB=+1,如圖1,作DE⊥x軸于E.
∵△ABP為等邊三角形,
∴DE=AB,即 =×,
解得k1=﹣2(舍去),k2=2﹣2,
∴k的值為2﹣2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)若1表示的點與﹣1表示的點重合,則﹣2表示的點與數(shù) 表示的點重合;
(2)若﹣1表示的點與3表示的點重合,5表示的點與數(shù) 表示的點重合;
(3)若數(shù)軸上A、B兩點之間的距離為c個單位長度,點A表示的有理數(shù)是a,并且A、B兩點經(jīng)折疊后重合,請寫出此時折線與數(shù)軸的交點表示的有理數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】王大伯幾年前承包了甲、乙兩片荒山,各栽100棵楊梅樹,成活98%.現(xiàn)已掛果,經(jīng)濟效益初步顯現(xiàn),為了分析收成情況,他分別從兩山上隨意各采摘了4棵樹上的楊梅,每棵的產(chǎn)量如折線統(tǒng)計圖所示.
(1)分別計算甲、乙兩山樣本的平均數(shù),并估算出甲、乙兩山楊梅的產(chǎn)量總和;
(2)試通過計算說明,哪個山上的楊梅產(chǎn)量較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點P(﹣2,3)關(guān)于x軸的對稱點在( 。
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】
(1)OA= cm,OB= cm.
(2)若點C是線段AO上一點,且滿足AC=CO+CB,求CO的長.
(3)若動點P、Q分別從A、B同時出發(fā),向右運動,點P的速度為2cm/s,點Q的速度為1cm/s,設(shè)運動時間為t(s),當(dāng)點P與點Q重合時,P、Q兩點停止運動.
①當(dāng)t為何值時,2OP﹣OQ=8.
②當(dāng)點P經(jīng)過點O時,動點M從點O出發(fā),以3cm/s的速度也向右運動.當(dāng)點M追上點Q后立即返回,以同樣的速度向點P運動,遇到點P后立即返回,又以同樣的速度向點Q運動,如此往返,直到點P、Q停止時,點M也停止運動.在此過程中,點M行駛的總路程為 cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠C=90°,∠B=30°,O為AB邊中點,將△ABC繞點O逆時針旋轉(zhuǎn)60°至△EDA位置,連接CD.
(1)求證:OD⊥BC;
(2)求證:四邊形AODC為菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com