如圖,在△ABC中,以BC為直徑的圓分別交邊AC、AB于D、E兩點(diǎn),連接BD、DE.若BD平分∠ABC,則下列結(jié)論不一定成立的是( 。
A.BD⊥AC B.AC2=2AB•AE
C.△ADE是等腰三角形 D.BC=2AD
D.
【解析】
試題分析:利用圓周角定理可得A正確;證明△ADE∽△ABC,可得出B正確;由B選項(xiàng)的證明,即可得出C正確;利用排除法可得D不一定正確.
∵BC是直徑,
∴∠BDC=90°,
∴BD⊥AC,故A正確;
∵BD平分∠ABC,BD⊥AC,
∴△ABC是等腰三角形,AD=CD,
∵∠AED=∠ACB,
∴△ADE∽△ABC,
∴△ADE是等腰三角形,
∴AD=DE=CD,
∴===,
∴AC2=2AB•AE,故B正確;
由B的證明過程,可得C選項(xiàng)正確.
故選D.
考點(diǎn): 1.圓周角定理;2.等腰三角形的判定;3.相似三角形的判定與性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com