如圖,AB為⊙O的直徑,C為⊙O上一點,AD和過C點的直線互相垂直,垂足為D,且AC平分∠DAB.

(1)求證:DC為⊙O的切線;

(2)若⊙O的半徑為3,AD=4,求AC的長.

考點:

切線的判定;相似三角形的判定與性質(zhì).

分析:

(1)連接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分線的性質(zhì)可以證明∠DAC=∠OCA,接著利用平行線的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可證明直線CD與⊙O相切于C點;

(2)連接BC,根據(jù)圓周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性質(zhì)即可解決問題.

解答:

(1)證明:連接OC

∵OA=OC

∴∠OAC=∠OCA

∵AC平分∠DAB

∴∠DAC=∠OAC

∴∠DAC=∠OCA

∴OC∥AD

∵AD⊥CD∴OC⊥CD

∴直線CD與⊙O相切于點C;

(2)解:連接BC,則∠ACB=90°.

∵∠DAC=∠OAC,∠ADC=∠ACB=90°,

∴△ADC∽△ACB,

,

∴AC2=AD•AB,

∵⊙O的半徑為3,AD=4,

∴AB=6,

∴AC=2

點評:

此題主要考查了切線的性質(zhì)與判定,解題時 首先利用切線的判定證明切線,然后利用切線的想這已知條件證明三角形相似即可解決問題.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為(  )
A、1cmB、2cmC、3cmD、4cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在水塔O的東北方向32m處有一抽水站A,在水塔的東南方向24m處有一建筑工地B,在AB間建一條直水管,則水管的長為
40m
40m

查看答案和解析>>

科目:初中數(shù)學 來源:江蘇省張家港市2012年中考網(wǎng)上閱卷適應性考試數(shù)學試題 題型:013

如圖,AB為⊙O的直甲徑,PD切⊙O于點C,交AB的延長線于D,且CO=CD,則∠PCA=

[  ]

A.60°

B.65°

C.67.

D.75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:單選題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為


  1. A.
    1cm
  2. B.
    2cm
  3. C.
    3cm
  4. D.
    4cm

查看答案和解析>>

科目:初中數(shù)學 來源:2008年福建省福州一中高中招生(面向福州以外)綜合素質(zhì)測試數(shù)學試卷(解析版) 題型:選擇題

如圖,已知⊙O的直AB=20cm,CD垂AB于E,CD=12cm,AE的長為( )

A.1cm
B.2cm
C.3cm
D.4cm

查看答案和解析>>

同步練習冊答案