【題目】如圖(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,動(dòng)點(diǎn)P在線段AC上以5cm/s的速度從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C,過(guò)點(diǎn)P作PD⊥AB于點(diǎn)D,將△APD繞PD的中點(diǎn)旋轉(zhuǎn)180°得到△A′DP,設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為x(s).

(1)當(dāng)點(diǎn)A′落在邊BC上時(shí),求x的值;
(2)在動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)到點(diǎn)C過(guò)程中,當(dāng)x為何值時(shí),△A′BC是以A′B為腰的等腰三角形;
(3)如圖(2),另有一動(dòng)點(diǎn)Q與點(diǎn)P同時(shí)出發(fā),在線段BC上以5cm/s的速度從點(diǎn)B運(yùn)動(dòng)到點(diǎn)C,過(guò)點(diǎn)Q作QE⊥AB于點(diǎn)E,將△BQE繞QE的中點(diǎn)旋轉(zhuǎn)180°得到△B′EQ,連結(jié)A′B′,當(dāng)直線A′B′與△ABC的一邊垂直時(shí),求線段A′B′的長(zhǎng).

【答案】
(1)

解:如圖1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,

∴AC= =4cm,

當(dāng)點(diǎn)A′落在邊BC上時(shí),由題意得,四邊形APA′D為平行四邊形,

∵PD⊥AB,

∴∠ADP=∠C=90°,

∵∠A=∠A,

∴△APD∽△ABC,

∵AP=5x,

∴A′P=AD=4x,PC=4﹣5x,

∵∠A′PD=∠ADP,

∴A′P∥AB,

∴△A′PC∽△ABC,

,即 = ,

解得:x= ,

∴當(dāng)點(diǎn)A′落在邊BC上時(shí),x=


(2)

解:當(dāng)A′B=BC時(shí),(5﹣8x)2+(3x)2=32

解得:

∵x≤ ,

;

當(dāng)A′B=A′C時(shí),x=


(3)

解:Ⅰ、當(dāng)A′B′⊥AB時(shí),如圖6,

∴DH=PA'=AD,HE=B′Q=EB,

∵AB=2AD+2EB=2×4x+2×3x=5,

∴x= ,

∴A′B′=QE﹣PD=x=

Ⅱ、當(dāng)A′B′⊥BC時(shí),如圖7,

∴B′E=5x,DE=5﹣7x,

∴cosB= ,

∴x= ,

∴A′B′=B′D﹣A′D=

Ⅲ、當(dāng)A′B′⊥AC時(shí),如圖8,

由(1)有,x=

∴A′B′=PA′sinA= ;

當(dāng)A′B′⊥AB時(shí),x= ,A′B′= ;

當(dāng)A′B′⊥BC時(shí),x= ,A′B′= ;

當(dāng)A′B′⊥AC時(shí),x= ,A′B′=


【解析】(1)根據(jù)勾股定理求出AC,證明△APD∽△ABC,△A′PC∽△ABC,根據(jù)相似三角形的性質(zhì)計(jì)算;(2)分A′B=BC、A′B=A′C兩種情況,根據(jù)等腰三角形的性質(zhì)解答;(3)根據(jù)題意畫(huà)出圖形,根據(jù)銳角三角函數(shù)的概念計(jì)算.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年1月,市教育局在全市中小學(xué)中選取了63所學(xué)校從學(xué)生的思想品德、學(xué)業(yè)水平、學(xué)業(yè)負(fù)擔(dān)、身心發(fā)展和興趣特長(zhǎng)五個(gè)維度進(jìn)行了綜合評(píng)價(jià).評(píng)價(jià)小組在選取的某中學(xué)七年級(jí)全體學(xué)生中隨機(jī)抽取了若干名學(xué)生進(jìn)行問(wèn)卷調(diào)查,了解他們每天在課外用于學(xué)習(xí)的時(shí)間,并繪制成如下不完整的統(tǒng)計(jì)圖.
根據(jù)上述信息,解答下列問(wèn)題:
(1)本次抽取的學(xué)生人數(shù)是 ;扇形統(tǒng)計(jì)圖中的圓心角α等于 ;補(bǔ)全統(tǒng)計(jì)直方圖;
(2)被抽取的學(xué)生還要進(jìn)行一次50米跑測(cè)試,每5人一組進(jìn)行.在隨機(jī)分組時(shí),小紅、小花兩名女生被分到同一個(gè)小組,請(qǐng)用列表法或畫(huà)樹(shù)狀圖求出她倆在抽道次時(shí)抽在相鄰兩道的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD(AB<AD).

(1)請(qǐng)用直尺和圓規(guī)按下列步驟作圖,保留作圖痕跡;
①以點(diǎn)A為圓心,以AD的長(zhǎng)為半徑畫(huà)弧交邊BC于點(diǎn)E,連接AE;
②作∠DAE的平分線交CD于點(diǎn)F;
③連接EF;
(2)在(1)作出的圖形中,若AB=8,AD=10,則tan∠FEC的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AB=18,cosB= ,把△ABC繞著點(diǎn)C旋轉(zhuǎn),使點(diǎn)B與AB邊上的點(diǎn)D重合,點(diǎn)A落在點(diǎn)E處,則線段AE的長(zhǎng)為(
A.6
B.7
C.8
D.9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】“賞中華詩(shī)詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國(guó)詩(shī)詞大會(huì)”,經(jīng)選拔后有50名學(xué)生參加決賽,這50名學(xué)生同時(shí)默寫(xiě)50首古詩(shī)詞,若每正確默寫(xiě)出一首古詩(shī)詞得2分,根據(jù)測(cè)試成績(jī)繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖如圖表: 請(qǐng)結(jié)合圖表完成下列各題:

組別

成績(jī)x分

頻數(shù)(人數(shù))

第1組

50≤x<60

6

第2組

60≤x<70

8

第3組

70≤x<80

14

第4組

80≤x<90

a

第5組

90≤x<100

10


(1)表中a的值為;
(2)頻數(shù)分布直方圖補(bǔ)充完整;
(3)若測(cè)試成績(jī)不低于80分為優(yōu)秀,則本次測(cè)試的優(yōu)秀率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校組建了演講、舞蹈、航模、合唱、機(jī)器人五個(gè)社團(tuán),全校3000名學(xué)生每人都參加且只參加了其中一個(gè)社閉的活動(dòng),校團(tuán)委從這3000名學(xué)生中隨機(jī)選取部分學(xué)生進(jìn)行了參加活動(dòng)情況的調(diào)查,并將調(diào)查結(jié)果繪制了如圖不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)統(tǒng)計(jì)圖完成下列問(wèn)題.

(1)參加本次調(diào)查有名學(xué)生;請(qǐng)你補(bǔ)全條形圖;
(2)在扇形圖中,表示機(jī)器人扇形的圓心角的度數(shù)為度;
(3)根據(jù)調(diào)查數(shù)據(jù)分析,全校共有名學(xué)生參加了合唱社團(tuán).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,點(diǎn)P沿AB邊從點(diǎn)A開(kāi)始以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),點(diǎn)Q沿CB邊從點(diǎn)C開(kāi)始以1cm/s的速度向點(diǎn)B運(yùn)動(dòng),P、Q同時(shí)出發(fā),用t(s)表示運(yùn)動(dòng)的時(shí)間(0≤t≤5).

(1)當(dāng)t為何值時(shí),以P、Q、B為頂點(diǎn)的三角形與△ABC相似.
(2)分別過(guò)點(diǎn)A,B作直線CP的垂線,垂足為D,E,設(shè)AD+BE=y,求y與t的函數(shù)關(guān)系式;并求當(dāng)t為何值時(shí),y有最大值.
(3)直接寫(xiě)出PQ中點(diǎn)移動(dòng)的路徑長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y=x+b與反比例函數(shù)y= 的圖象交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(2,3).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求點(diǎn)B的坐標(biāo);
(3)請(qǐng)根據(jù)圖象直接寫(xiě)出不等式x+b> 的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在矩形ABCD中,AD=5,AB=4,點(diǎn)E,F(xiàn)在直線AD上,且四邊形BCFE為菱形.若線段EF的中點(diǎn)為點(diǎn)M,則線段AM的長(zhǎng)為

查看答案和解析>>

同步練習(xí)冊(cè)答案