【題目】如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點D落在D′處,則重疊部分△AFC的面積是(
A.8
B.10
C.20
D.32

【答案】B
【解析】解:重疊部分△AFC的面積是矩形ABCD的面積減去△FBC與△AFD’的面積再除以2, 矩形的面積是32,
∵AB∥CD,
∴∠ACD=∠CAB,
∵△ACD′由△ACD翻折而成,
∴∠ACD=∠ACD′,
∴∠ACD′=∠CAB,
∴AF=CF,
∵BF=AB﹣AF=8﹣AF,
∴CF2=BF2+BC2
∴AF2=(8﹣AF)2+42
∴AF=5,BF=3
∴SAFC=SABC﹣SBFC=10.
故選B.
解決此類問題,應(yīng)結(jié)合題意,最好實際操作圖形的折疊,易于找到圖形間的關(guān)系.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知x1是方程mx2+2mx+30的一個解,則m的值是__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】【題目】如圖所示的105的數(shù)陣,是由一些連續(xù)奇數(shù)組成的,形如圖框中的四個數(shù),設(shè)第一行的第一個數(shù)為

1用含的式子表示另外三個數(shù);

2若這樣框中的四個數(shù)的和是200,求出這四個數(shù);

3是否存在這樣的四個數(shù),它們的和為246?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積. 某學習小組經(jīng)過合作交流,給出了下面的解題思路,請你按照他們的解題思路完成解答過程.
作AD⊥BC于D,設(shè)BD=x,用含x的代數(shù)式表示CD→根據(jù)勾股定理,利用AD作為“橋梁”,建立方程模型求出x→利用勾股定理求出AD的長,再計算三角形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形的長為4,寬為a(a<4),剪去一個邊長最大的正方形后剩下一個矩形,同樣的方法操作,在剩下的矩形中再剪去一個最大的正方形,若剪去三個正方形后,剩下的恰好是一個正方形,則最后一個正方形的邊長是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】分解因式:x2﹣9=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】正五邊形每個外角的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線和雙曲線相交于點A(1,2)和點B(n,-1).

(1)求m,k的值;

(2)不等式的解集為

(3)以A、B、O、P為頂點的平行四邊形,頂點P的坐標是 .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明有5張寫著不同的數(shù)字的卡片,請你按要求抽出卡片,完成下列各問題:

(1)從中取出2張卡片,使這2張卡片上數(shù)字乘積最大,最大值是   ;

(2)從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,最小值是   ;

(3)從中取出4張卡片,用學過的運算方法,使結(jié)果為24.寫出運算式子:

查看答案和解析>>

同步練習冊答案