【題目】如圖,在△ABC中,∠ABC90°,以AB的中點(diǎn)O為圓心,OA為半徑的圓交AC于點(diǎn)D,EBC的中點(diǎn),連接DE,OE

1)判斷DE與⊙O的位置關(guān)系,并說(shuō)明理由;

2)若cosBAD,BE12,求OE的長(zhǎng);

3)求證:BC22CDOE

【答案】(1)DE與⊙O相切(2153)證明見(jiàn)解析

【解析】

1DE與⊙O相切,連接OD,BD.證明DEOD即可證明DE為⊙O的切線;

2)由cosBAD=得到sinBAC=,又BE=12,BC=24,所以AC=30,又AC=2OE,所以OE=AC=×30=15;

3OEABC的中位線,所以AC=2OE,證明ABC∽△BDC,則BC2=ACCD=2CDOE

1DE相切

理由如下:連接 OD,BD.

AB直徑,

∴∠ADB=90°,

RtBDC中,E為斜邊BC的中點(diǎn),

CE=DE=BE= BC,

∴∠C=CDE

OA=OD

∴∠A=ADO,

∵∠ABC=90°,即∠C+A=90°,

∴∠ADO+CDE=90°,即∠ODE=90°

DEOD,又OD為圓的半徑,

DE的切線;

2)∵cosBAD=

sinBAC=

又∵BE=12EBC的中點(diǎn),即BC=24

AC=30,

又∵AC=2OE,

OE=AC=×30=15

3)證明:∵EBC的中點(diǎn),O點(diǎn)是AB的中點(diǎn),

OEABC的中位線,

AC=2OE

∵∠C=C,∠ABC=BDC,

∴△ABC∽△BDC,

BC2=ACCD

BC2=2CDOE

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+m+1x軸于點(diǎn)Aa0)和Bb,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)命題:

當(dāng)x0時(shí),y0

a=﹣1,則b4

拋物線上有兩點(diǎn)Px1,y1)和Qx2y2),若x11x2,且x1+x22,則y1y2;

點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為E,點(diǎn)GF分別在x軸和y軸上,當(dāng)m2時(shí),四邊形EDFG周長(zhǎng)的最小值為6

其中真命題的序號(hào)是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB為⊙O的直徑,C為⊙O外一點(diǎn),且∠CAB90°,BD是⊙O的弦,BDCO

1)請(qǐng)說(shuō)明:CD是⊙O的切線:

2)若AB4,BC2.則陰影部分的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了豐富校園文化生活,促進(jìn)學(xué)生積極參加體育運(yùn)動(dòng),某校準(zhǔn)備成立校排球隊(duì),現(xiàn)計(jì)劃購(gòu)進(jìn)一批甲、乙兩種型號(hào)的排球,已知一個(gè)甲種型號(hào)排球的價(jià)格與一個(gè)乙種型號(hào)排球的價(jià)格之和為140元;如果購(gòu)買(mǎi)6個(gè)甲種型號(hào)排球和5個(gè)乙種型號(hào)排球,一共需花費(fèi)780元.

1)求每個(gè)甲種型號(hào)排球和每個(gè)乙種型號(hào)排球的價(jià)格分別是多少元?

2)學(xué)校計(jì)劃購(gòu)買(mǎi)甲、乙兩種型號(hào)的排球共26個(gè),其中甲種型號(hào)排球的個(gè)數(shù)多于乙種型號(hào)排球,并且學(xué)校購(gòu)買(mǎi)甲、乙兩種型號(hào)排球的預(yù)算資金不超過(guò)1900元,求該學(xué)校共有幾種購(gòu)買(mǎi)方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】平面直角坐標(biāo)系中,二次函數(shù)yax2+bx+ca0)的圖象如圖所示,現(xiàn)給出下列結(jié)論:①abc0;②c+2a0;③9a3b+c0;④abam2+bmm為實(shí)數(shù));⑤4acb20.其中正確結(jié)論的個(gè)數(shù)是( 。

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,正方形A1B1C1O1、A2B2C2C1、、AnBnCnCn﹣1按如圖所示的方式放置,其中點(diǎn)A1、A2A3、、An均在一次函數(shù)y=kx+b的圖象上,點(diǎn)C1、C2、C3、Cn均在x軸上.若點(diǎn)B1的坐標(biāo)為(11),點(diǎn)B2的坐標(biāo)為(3,2),則點(diǎn)An的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知正方形ABCD,點(diǎn)M是邊BA延長(zhǎng)線上的動(dòng)點(diǎn)(不與點(diǎn)A重合),且AM<AB,△CBE由DAM平移得到.若過(guò)點(diǎn)E作EHAC,H為垂足,則有以下結(jié)論:點(diǎn)M位置變化,使得DHC=60°時(shí),2BE=DM;無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,都有DM=HM;③無(wú)論點(diǎn)M運(yùn)動(dòng)到何處,CHM一定大于135°.其中正確結(jié)論的序號(hào)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段AB繞著點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)120°得到線段AC,點(diǎn)B對(duì)應(yīng)點(diǎn)C,在∠BAC的內(nèi)部有一點(diǎn)P,PA8,PB4PC4,則線段AB的長(zhǎng)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】同時(shí)拋擲兩枚硬幣,按照正面出現(xiàn)的次數(shù),可以分為“2個(gè)正面、“1個(gè)正面沒(méi)有正面3種可能的結(jié)果,小紅與小明兩人共做了6組實(shí)驗(yàn),每組實(shí)驗(yàn)都為同時(shí)拋擲兩枚硬幣10次,下表為實(shí)驗(yàn)記錄的統(tǒng)計(jì)表:

結(jié)果

第一組

第二組

第三組

第四組

第五組

第六組

兩個(gè)正面

3

3

5

1

4

2

一個(gè)正面

6

5

5

5

5

7

沒(méi)有正面

1

2

0

4

1

1

由上表結(jié)果,計(jì)算得出現(xiàn)“2個(gè)正面“1個(gè)正面沒(méi)有正面3種結(jié)果的頻率分別是___________________.當(dāng)試驗(yàn)組數(shù)增加到很大時(shí),請(qǐng)你對(duì)這三種結(jié)果的可能性的大小作出預(yù)測(cè):______________

查看答案和解析>>

同步練習(xí)冊(cè)答案