【題目】某市團委舉辦“我的中國夢”為主題的知識競賽,甲、乙兩所學校參賽人數(shù)相等,比賽結(jié)束后,發(fā)現(xiàn)學生成績分別為70分,80分,90分,100分,并根據(jù)統(tǒng)計數(shù)據(jù)繪制了如下不完整的統(tǒng)計圖表: 乙校成績統(tǒng)計表
分數(shù)(分) | 人數(shù)(人) |
70 | 7 |
80 | |
90 | 1 |
100 | 8 |
(1)在圖①中,“80分”所在扇形的圓心角度數(shù)為;
(2)請你將圖②補充完整;
(3)求乙校成績的平均分;
(4)經(jīng)計算知S甲2=135,S乙2=175,請你根據(jù)這兩個數(shù)據(jù),對甲、乙兩校成績作出合理評價.
【答案】
(1)54°
(2)解:20﹣6﹣3﹣6=5,統(tǒng)計圖補充如下:
(3)解:20﹣1﹣7﹣8=4, =85
(4)解:∵S甲2<S乙2,
∴甲校20名同學的成績比較整齊
【解析】(1)6÷30%=20,
3÷20=15%,
360°×15%=54°;
(1)根據(jù)統(tǒng)計圖可知甲校70分的有6人,從而可求得總?cè)藬?shù),然后可求得成績?yōu)?0分的同學所占的百分比,最后根據(jù)圓心角的度數(shù)=360°×百分比即可求得答案;(2)用總?cè)藬?shù)減去成績?yōu)?0分、80分、90分的人數(shù)即可求得成績?yōu)?00分的人數(shù),從而可補全統(tǒng)計圖;(3)先求得乙校成績?yōu)?0分的人數(shù),然后利用加權(quán)平均數(shù)公式計算平均數(shù);(4)根據(jù)方差的意義即可做出評價.
科目:初中數(shù)學 來源: 題型:
【題目】用配方法解方程x2﹣2x﹣5=0方程可變形為( )
A.(x+1)2=4
B.(x﹣1)2=4
C.(x+1)2=6
D.(x﹣1)2=6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】八(1)班組織了一次食品安全知識競賽,甲、乙兩隊各5人的成績?nèi)绫硭荆?0分制).
甲 | 8 | 10 | 9 | 6 | 9 |
乙 | 10 | 8 | 9 | 7 | 8 |
(1)甲隊成績的中位數(shù)是分;
(2)乙隊成績的眾數(shù)是分;
(3)分別計算甲隊、乙隊的方差;并判斷哪隊的成績更穩(wěn)定?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】最近幾年,某市持續(xù)大面積霧霾天氣讓環(huán)保和健康問題成為焦點,為了調(diào)查學生對霧霾天氣知識的了解程度,某校在全校學生中抽取400名同學做了一次調(diào)查,調(diào)查結(jié)果共分為四個等組A.非常了解;B.比較了解;C.基本了解;D.不了解
根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的三種統(tǒng)計圖表.
對霧霾天氣了解程度的 條形統(tǒng)計圖 | 對霧霾天氣了解程度的 扇形統(tǒng)計圖 | 對霧霾天氣了解程度的 統(tǒng)計表 | |
圖1 | 圖2 | 對霧霾的了解程度 | 百分比 |
A.非常了解 | 5% | ||
B.比較了解 | m | ||
C.基本了解 | 45% | ||
D.不了解 | n |
請結(jié)合統(tǒng)計圖表,回答下列問題:
(1)本次參與調(diào)查的學生選擇“A.非常了解”的人數(shù)為__________人,m=__________,n=__________;
(2)請在圖1中補全條形統(tǒng)計圖;
(3)請計算在圖2所示的扇形統(tǒng)計圖中,D部分扇形所對應的圓心角是多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】遵義市某中學為了搞好“創(chuàng)建全國文明城市”的宣傳活動,對本校部分學生(隨機抽查)進行了一次相關(guān)知識了解程度的調(diào)查測試(成績分為A、B、C、D、E五個組,x表示測試成績).通過對測試成績的分析,得到如圖所示的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息解答以下問題:
(1)參加調(diào)查測試的學生為多少人?
(2)將條形統(tǒng)計圖補充完整;
(3)本次調(diào)查測試成績中的中位數(shù)落在哪組內(nèi)?
(4)若測試成績在80分以上(含80分)為優(yōu)秀,該中學共有學生2600人,請你根據(jù)樣本數(shù)據(jù)估計全校學生測試成績?yōu)閮?yōu)秀的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(4,0),B(0,4),C(6,6).
(1)求拋物線的表達式;
(2)證明:四邊形AOBC的兩條對角線互相垂直;
(3)在四邊形AOBC的內(nèi)部能否截出面積最大的DEFG?(頂點D,E,F,G分別在線段AO,OB,BC,CA上,且不與四邊形AOBC的頂點重合)若能,求出DEFG的最大面積,并求出此時點D的坐標;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com