閱讀下面的材料:
在平面幾何中,我們學(xué)過兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)y=k1x+b1(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b2(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.
解答下面的問題:
(1)求過點(diǎn)P(1,4)且與已知直線y=-2x-1平行的直線的函數(shù)表達(dá)式,并畫出直線l的圖象;
(2)設(shè)直線l分別與y軸、x軸交于點(diǎn)A、B,如果直線:y=kx+t ( t>0)與直線l平行且交x軸于點(diǎn)C,求出△ABC的面積S關(guān)于t的函數(shù)表達(dá)式.
(1)y=—2x+6,直線的圖象如圖:
(2)△的面積關(guān)于的函數(shù)表達(dá)式為
【解析】
試題分析:(1)設(shè)直線l的函數(shù)表達(dá)式為y=k x+b,根據(jù)平行的性質(zhì)可得k=—2,再根據(jù)直線l過點(diǎn)(1,4),即可求得直線l的函數(shù)表達(dá)式,最后根據(jù)描點(diǎn)法即可做出直線的圖象;
(2)先分別求得直線l分別與y軸、x軸的交點(diǎn)A、B的坐標(biāo),再根據(jù)l∥,可設(shè)直線為y=—2x+t,從而表示出C點(diǎn)的坐標(biāo)為(,0),由t>0可判斷C點(diǎn)在x軸的正半軸上,再分C點(diǎn)在B點(diǎn)的左側(cè)與C點(diǎn)在B點(diǎn)的右側(cè)兩種情況結(jié)合三角形的面積公式分析即可.
(1)設(shè)直線l的函數(shù)表達(dá)式為y=k x+b.
∵直線l與直線y=—2x—1平行,∴k=—2.
∵直線l過點(diǎn)(1,4),∴—2+b=4,∴b=6.
∴直線l的函數(shù)表達(dá)式為y=—2x+6,直線的圖象如圖:
(2)∵直線l分別與y軸、x軸交于點(diǎn)A、B,
∴點(diǎn)A、B的坐標(biāo)分別為(0,6)、(3,0).
∵l∥,∴直線為y=—2x+t.
∴C點(diǎn)的坐標(biāo)為(,0).
∵t>0,
∴>0.
∴C點(diǎn)在x軸的正半軸上.
當(dāng)C點(diǎn)在B點(diǎn)的左側(cè)時(shí),;
當(dāng)C點(diǎn)在B點(diǎn)的右側(cè)時(shí),.
∴△的面積關(guān)于的函數(shù)表達(dá)式為
考點(diǎn):一次函數(shù)的綜合題
點(diǎn)評(píng):本題知識(shí)點(diǎn)多,綜合性強(qiáng),難度較大,主要考查學(xué)生對(duì)一次函數(shù)的知識(shí)的熟練掌握情況.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:閱讀理解
閱讀下面的材料:
在平面幾何中,我們學(xué)過兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)的圖象為直線,一次函數(shù)的圖象為直線,若,且,我們就稱直線與直線互相平行.
解答下面的問題:
(1)已知一次函數(shù)的圖象為直線,求過點(diǎn)且與已知直線平行的直線的函數(shù)表達(dá)式,并在坐標(biāo)系中畫出直線和的圖象;
(2)設(shè)直線分別與軸、軸交于點(diǎn)、,過坐標(biāo)原點(diǎn)O作OC⊥AB,垂足為C,求和兩平行線之間的距離OC的長(zhǎng)。
(3)若Q為OA上一動(dòng)點(diǎn),求QP+QB的最小值,并求取得最小值時(shí)Q點(diǎn)的坐標(biāo)。
(4)在軸上找一點(diǎn)M,使△BMP為等腰三角形,求M的坐標(biāo)。(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年廣東省汕頭市潮陽區(qū)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com