【題目】如圖,在ABC中,AB=AC,∠BAC=120°,AB的垂直平分線交ABE,交BCM,AC的垂直平分線交ACF,交BCN.連接AM、AN

1)求∠MAN的大小;

2)求證:BM=CN

【答案】1)∠MAN=60°;(2)見解析.

【解析】

1)由在△ABC中,AB=AC,∠BAC=120°,可求得∠B與∠C的度數(shù),又由AB的垂直平分線交ABE,交BCM;可得AM=BM,繼而求得∠MAB的度數(shù),則可求得∠AMN的度數(shù),同樣方法得出∠ANM的度數(shù),繼而求得答案;
2)先得△AMN為等邊三角形,則可得AM=AN=MN,又由BM=AMCN=AN,即可證得結(jié)論.

1)解:∵AB=AC,∠A=120°,
∴∠B=C=30°
∵直線ME垂直平分AB,
BM=AM,
∴∠B=MAB=30°
∴∠AMN=B+MAB=60°,
同理可得:∠ANM=60°
∴∠MAN=180°-60°-60°=60°;
2)證明:∵在△AMN中,∠AMN=ANM=MAN=60°,
∴△AMN為等邊三角形.
AM=AN=MN,
又∵BM=AM,CN=AN,
BM=CN

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O為坐標(biāo)原點,點A(﹣1,5)和點B(m,﹣1)均在反比例函數(shù)圖象上

(1)求m,k的值;

(2)當(dāng)x滿足什么條件時,﹣x+4>﹣

(3)P為y軸上一點,若△ABP的面積是△ABO面積的2倍,直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=x2﹣4y軸的交點坐標(biāo)是_____,與x軸的交點坐標(biāo)是_____,簡要步驟:_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】銅陵市雨污分流工程建設(shè)期間,某工程隊承包了一段總長2400米的地下排水管道鋪設(shè)任務(wù),按原計劃鋪設(shè)800米后,為盡快完成任務(wù),后來每天的工作效率比原計劃提高了25%,結(jié)果共用13天完成任務(wù).

1)求原計劃平均每天鋪設(shè)管道多少米?

2)若原來每天支付工人工資為2000元,提高工作效率后每天支付給工人的工資增長了30%,則完成整個工程后共支付工人工資多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1有兩條長度相等的相交線段AB、CD,它們相交的銳角中有一個角為60°,為了探究AD、CBCD(或AB)之間的關(guān)系,小亮進行了如下嘗試:

(1)在其他條件不變的情況下使得ADBC,如圖2,將線段AB沿AD方向平移AD的長度,得到線段DE,然后聯(lián)結(jié)BE,進而利用所學(xué)知識得到AD、CBCD(或AB)之間的關(guān)系:   ;(直接寫出結(jié)果)

(2)根據(jù)小亮的經(jīng)驗,請對圖1的情況(ADCB不平行)進行嘗試,寫出AD、CBCD(或AB)之間的關(guān)系,并進行證明;

(3)綜合(1)、(2)的證明結(jié)果,請寫出完整的結(jié)論:   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某測量隊在山腳A處測得山上樹頂仰角為45°(如圖),測量隊在山坡上前進600米到D處,再測得樹頂?shù)难鼋菫?/span>60°,已知這段山坡的坡角為30°,如果樹高為15米,則山高為( 。ň_到1米, =1.732).

A. 585 B. 1014 C. 805 D. 820

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,于點D,點E是直線AC上一動點,連接DE,過點D,交直線BC于點F

探究發(fā)現(xiàn):

如圖1,若,點E在線段AC上,則______;

數(shù)學(xué)思考:

如圖2,若點E在線段AC上,則______用含m,n的代數(shù)式表示;

當(dāng)點E在直線AC上運動時,中的結(jié)論是否任然成立?請僅就圖3的情形給出證明;

拓展應(yīng)用:若,,請直接寫出CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,ACBC,∠ACB90°,直線CP不過點AB,且不平分∠ACB,點B關(guān)于直線CP的對稱點為E,直線AE交直線CP于點F

1)如圖1,直線CP與線段AB相交,若∠PCB25°,求∠CAF的度數(shù);

2)如圖1,當(dāng)直線CP繞點C旋轉(zhuǎn)時,記∠PCBαα90°,且α≠45°).

①∠FEB的大小是否改變,若不變,求出∠FEB的度數(shù);若改變,請用含α的式子表示).

②找出線段AF,EF,BC的數(shù)量關(guān)系,并給出證明.

3)如圖2,當(dāng)直線CPABC外側(cè),且<∠ACP45°時.若BC5,EF8,求CF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 .

1求拋物線的頂點坐標(biāo).

2若直線經(jīng)過2,0點且與軸垂直直線經(jīng)過拋物線的頂點與坐標(biāo)原點,的交點P在拋物線上.求拋物線的表達式.

3已知點A0,2),A關(guān)于軸的對稱點為點B拋物線與線段AB恰有一個公共點,結(jié)合函數(shù)圖象寫出的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案