【題目】如圖,PA是⊙O的切線,A是切點,AC是直徑,AB是弦,連接PB、PC,PC交AB于點E,且PA=PB.
(1)求證:PB是⊙O的切線;
(2)若∠APC=3∠BPC,求的值.
【答案】(1)證明見解析;(2)
【解析】(1)如圖,連接OP、OB,證明△PAO≌△PBO,根據(jù)全等三角形對應角相等可得∠PBO=∠PAO=90°,據(jù)此即可證得;
(2)連接BC,設OP交AB于K,首先證明BC=2OK,設OK=a,則BC=2a,再證明BC=PB=PA=2a,由△PAK∽△POA,可得PA2=PKPO,設PK=x,則有:x2+ax﹣4a2=0,解得x=(負根已經(jīng)舍棄),推出PK=,由PK∥BC,可得.
(1)如圖,連接OP、OB,
∵PA是⊙O的切線,
∴PA⊥OA,
∴∠PAO=90°,
∵PA=PB,PO=PO,OA=OB,
∴△PAO≌△PBO.
∴∠PAO=∠PBO=90°,
∴PB⊥OB,
∴PB是⊙O的切線;
(2)如圖,連接BC,設OP交AB于K,
∵AB是直徑,
∴∠ABC=90°,
∴AB⊥BC,
∵PA、PB都是切線,
∴PA=PB,∠APO=∠BPO,
∵OA=OB,
∴OP垂直平分線段AB,
∴OK∥BC,
∵AO=OC,
∴AK=BK,
∴BC=2OK,設OK=a,則BC=2a,
∵∠APC=3∠BPC,∠APO=∠OPB,
∴∠OPC=∠BPC=∠PCB,
∴BC=PB=PA=2a,
∵△PAK∽△POA,
∴PA2=PKPO,設PK=x,
則有:x2+ax﹣4a2=0,
解得x=(負根已經(jīng)舍棄),
∴PK=,
∵PK∥BC,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,點D是BC邊的中點,BD=2,tanB=.
(1)求AD和AB的長;
(2)求sin∠BAD的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=30cm,DE是AB的垂直平分線,分別交AB、AC于D、E兩點.(1)若∠C=70°,則∠BEC=_____;(2)若BC=20cm,則△BCE的周長是_____cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為提高飲水質(zhì)量,越來越多的居民開始選購家用凈水器.一商家抓住商機,從廠家購進了A、B兩種型號家用凈水器共160臺,A型號家用凈水器進價是150元/臺,B型號家用凈水器進價是350元/臺,購進兩種型號的家用凈水器共用去36000元.
(1)求A、B兩種型號家用凈水器各購進了多少臺;
(2)為使每臺B型號家用凈水器的毛利潤是A型號的2倍,且保證售完這160臺家用凈水器的毛利潤不低于11000元,求每臺A型號家用凈水器的售價至少是多少元?(注:毛利潤=售價﹣進價)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】用1塊A型鋼板可制成2塊C型鋼板和1塊D型鋼板;用1塊B型鋼板可制成1塊C型鋼板和3塊D型鋼板.現(xiàn)準備購買A、B型鋼板共100塊,并全部加工成C、D型鋼板.要求C型鋼板不少于120塊,D型鋼板不少于250塊,設購買A型鋼板x塊(x為整數(shù)).
(1)求A、B型鋼板的購買方案共有多少種?
(2)出售C型鋼板每塊利潤為100元,D型鋼板每塊利潤為120元.若將C、D型鋼板全部出售,請你設計獲利最大的購買方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC。
理由如下:
AD⊥BC于D,EG⊥BC于G,(已知)
∠ADC=∠EGC=90°,( )
AD‖EG,( )
∠1=∠2,( )
=∠3,(兩直線平行,同位角相等)
又∠E=∠1(已知)
= (等量代換)
AD平分∠BAC( )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC與△CDE都是等邊三角形,B,C,D在一條直線上,連結(jié)B,E兩點交AC于點M,連結(jié)A,D兩點交CE于N點.
(1)AD與BE有什么數(shù)量關(guān)系,并證明你的結(jié)論.
(2)求證:△MNC是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列表格:請你結(jié)合該表格及相關(guān)知識,求出b、c的值.即b=_________,c=___________。
列舉 | 猜想 |
3、4、5 | 32=4+5 |
5、12、13 | 52=12+13 |
7、24、25 | 72=24+25 |
…… | …… |
13、b、c | 132=b+c |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】請完成下面的解答過程完.如圖,∠1=∠B,∠C=110°,求∠3的度數(shù).
解:∵∠1=∠B
∴AD∥( )(內(nèi)錯角相等,兩直線平行)
∴∠C+∠2=180°,( )
∵∠C=110°.
∴∠2=( )°.
∴∠3=∠2=70°.( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com