【題目】已知拋物線與軸只有一個(gè)公共點(diǎn).
()求的值.
()怎樣平移拋物線就可以得到拋物線?請(qǐng)寫出具體的平移方法.
()若點(diǎn)和點(diǎn)都在拋物線上,且,直接寫出的取值范圍.
【答案】(1)1;(2)平移拋物線就可以得到拋物線的方法是向右平移個(gè)單位長(zhǎng)度,向下平移個(gè)單位長(zhǎng)度;().
【解析】試題分析:(1),求k值.(2)先把拋物線配方,再根據(jù)二次函數(shù)平移方法平移二次函數(shù).(3)求出二次函數(shù)頂點(diǎn)坐標(biāo),利用二次函數(shù)增減性求m的范圍.
試題解析:(1)a=2,b=-4,c=k,,k=2.
(2)拋物線:,拋物線,所以拋物線,
平移拋物線就可以得到拋物線的方法是向右平移個(gè)單位長(zhǎng)度,向下平移個(gè)單位長(zhǎng)度
(3)當(dāng)時(shí),,即,
在中,
令,解得:或,
則當(dāng)時(shí),即時(shí),
的范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某小區(qū)的一個(gè)健身器材,已知BC=0.15m,AB=2.70m,∠BOD=70°,求端點(diǎn)A到地面CD的距離(精確到0.1m).(參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸交于兩點(diǎn),其中點(diǎn),點(diǎn),點(diǎn)都在拋物線上,M為拋物線的頂點(diǎn).
求拋物線的函數(shù)解析式;
求的面積;
根據(jù)圖形直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都為1個(gè)單位長(zhǎng)度,△ABC的三個(gè)頂點(diǎn)的位置如圖所示,現(xiàn)將△ABC平移后得△DEF,使點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)D,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.
(1)畫出△DEF;
(2)連接AD、BE,則線段AD與BE的關(guān)系是 ;
(3)求△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形ABCD坐標(biāo)為A(0,0),B(0,3),C(3,5),D(5,0).
(1)請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中畫出四邊形ABCD;
(2)把四邊形ABCD先向上平移2個(gè)單位,再向左平移3個(gè)單位得到四邊形,求平移后各頂點(diǎn)的坐標(biāo);
(3)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙的半徑為9cm,射線經(jīng)過點(diǎn),OP=15 cm,射線與⊙相切于點(diǎn).動(dòng)點(diǎn)自P點(diǎn)以cm/s的速度沿射線方向運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)也自P點(diǎn)以2cm/s的速度沿射線方向運(yùn)動(dòng),則它們從點(diǎn)出發(fā) s后所在直線與⊙相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長(zhǎng)是1),△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問題:
(1)作出△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的△AB1C1.
(2)作出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱的△A1B2C2.
(3)請(qǐng)直接寫出以A1、B2、C2為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn)D的坐標(biāo)________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B、E分別在AC、DF上,AF分別交BD、CE于點(diǎn)M、N,∠A=∠F,∠1=∠2.
(1)求證:四邊形BCED是平行四邊形;
(2)已知DE=2,連接BN,若BN平分∠DBC,求CN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)某校八年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷售工作,已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話。
(1)求每天的銷售量y(千克)與銷售單價(jià)x(元)之間的函數(shù)關(guān)系式。(6分)
(2)該超市銷售這種水果每天獲取的利潤(rùn)為1040元,那么銷售單價(jià)為多少元?(6分)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com