【題目】若分式 運算結果為x,則在“□”中添加的運算符號為(
A.+
B.﹣
C.+或×
D.﹣或÷

【答案】D
【解析】解:A、根據(jù)題意得: + = ,不符合題意; B、根據(jù)題意得: = =x,不符合題意;
C、根據(jù)題意得: × = ,不符合題意;
D、根據(jù)題意得: = =x; ÷ = =x,符合題意;
故選D
【考點精析】本題主要考查了分式的混合運算的相關知識點,需要掌握運算的順序:第一級運算是加法和減法;第二級運算是乘法和除法;第三級運算是乘方.如果一個式子里含有幾級運算,那么先做第三級運算,再作第二級運算,最后再做第一級運算;如果有括號先做括號里面的運算.如順口溜:"先三后二再做一,有了括號先做里."當有多層括號時,先算括號內的運算,從里向外{[(?)]}才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD 中,∠ABC=90°,AB=6,BC=8,CD=10,AD=10 ,

(1)求四邊形ABCD的面積(2)求 BD的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為實現(xiàn)區(qū)域教育均衡發(fā)展,我市計劃對某縣、兩類薄弱學校全部進行改造.根據(jù)預算,共需資金1575萬元.改造一所類學校和兩所類學校共需資金230萬元;改造兩所類學校和一所類學校共需資金205萬元.

1)改造一所類學校和一所類學校所需的資金分別是多少萬元?

2)若該縣的類學校不超過5所,則類學校至少有多少所?

3)我市計劃今年對該縣、兩類學校共6所進行改造,改造資金由國家財政和地方財政共同承擔.若今年國家財政撥付的改造資金不超過400萬元;地方財政投入的改造資金不少于70萬元,其中地方財政投入到、兩類學校的改造資金分別為每所10萬元和15萬元.請你通過計算求出有幾種改造方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一個利用四邊形的不穩(wěn)定性制作的菱形晾衣架.已知其中每個菱形的邊長為20cm,墻上懸掛晾衣架的兩個鐵釘AB之間的距離為 cm,則∠1等于( 。

A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在每個小正方形的邊長均為1的方格紙中,有線段AB,點A、B均在小正方形的頂點上.

1)在方格紙中畫出以∠ABC為直角的直角三角形ABC,點C在小正方形的頂點上,且三角形ABC的面積為5;

2)在方格紙中畫出以AB為一邊的菱形ABDE,點D、E在小正方形的頂點上,且菱形ABDE的面積為3,連接CE,請直接寫出線段CE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD外側作直線DE,點C關于直線DE的對稱點為M,連接CM,AM,其中AM交直線DE于點N.若45°<∠CDE<90°,當MN=3,AN=4時,正方形ABCD的邊長為( 。

A.
B.5
C.5
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖四邊形ABCD和四邊形OEFG都是正方形,點O是正方形ABCD兩對角線的交點,已知AB=2,EF=3,正方形OEFG繞點O轉動,OE交BC上一點N,OG交CD上一點M.求四邊形OMCN的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為支援四川雅安地震災區(qū),某市民政局組織募捐了240噸救災物資,現(xiàn)準備租用甲、乙兩種貨車,將這批救災物資一次性全部運往災區(qū),它們的載貨量和租金如下表:


甲種貨車

乙種貨車

載貨量(噸/輛)

45

30

租金(元/輛)

400

300

如果計劃租用6輛貨車,且租車的總費用不超過2300元,求最省錢的租車方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)y=﹣x2+bx+c的圖象與x軸交于A、B兩點,與y軸交于C(0,3),A點在原點的左側,B點的坐標為(3,0).點P是拋物線上一個動點,且在直線BC的上方.

(1)求這個二次函數(shù)的表達式.

(2)連接PO、PC,并把△POC沿CO翻折,得到四邊形POP′C,那么是否存在點P,使四邊形POP′C為菱形?若存在,請求出此時點P的坐標;若不存在,請說明理由.

(3)當點P運動到什么位置時,四邊形 ABPC的面積最大,并求出此時點P的坐標和四邊形ABPC的最大面積.

查看答案和解析>>

同步練習冊答案