(2010•西城區(qū)二模)為了積極應對全球金融危機,某地區(qū)采取宏觀經(jīng)濟政策,啟動了新一輪投資計劃,該計劃分為民生工程、基礎建設、企業(yè)技改、重點工程等四個項目.圖1表示這個投資計劃的分項目統(tǒng)計圖,圖2表示該地區(qū)民生工程項目分類情況統(tǒng)計圖.

請你根據(jù)圖1、圖2所給信息,回答下列問題:
(1)在圖1中,企業(yè)技改項目投資占總投資的百分比是多少?
(2)在圖2中,如果“交通設施”投資且比“食品衛(wèi)生”投資多850萬元,且占“民生工程”的投資的25%,那么“交通設施”投資及“民生工程”投資各是多少萬元?并補全圖2;
(3)求該地區(qū)投資計劃的總額約為多少萬元?(精確到萬元)
【答案】分析:(1)由百分比的和為1可計算出企業(yè)技改項目投資占總投資的百分比;
(2)“食品衛(wèi)生”的投資為150萬元,則“交通設施”投資=150-850=1000萬元,“民生工程”的投資=1000÷25%=4000萬元;
(3)投資計劃的總額=民生工程投資÷民生工程投資占的比例.
解答:解:(1)企業(yè)技改項目投資占總投資的百分比=1-46%-14%-30%=10%;(1分)

(2)150+850=1000,
∴交通設施投資1000萬元;
,
∴民生工程投資4000萬元;
答案見圖;(5分)

(3)
∴投資計劃的總額約為28571萬元.(6分)
點評:本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù);扇形統(tǒng)計圖直接反映部分占總體的百分比大。
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年廣東省初中畢業(yè)生學業(yè)考試數(shù)學押題卷(解析版) 題型:解答題

(2010•西城區(qū)二模)如圖,二次函數(shù)y1=ax2+bx+3的圖象與x軸相交于點A(-3,0)、B(1,0),交y軸于點C,C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)y2=mx+n的圖象經(jīng)過B、D兩點.
(1)求二次函數(shù)的解析式及點D的坐標;
(2)根據(jù)圖象寫出y2>y1時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市西城區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•西城區(qū)二模)在平面直角坐標系中,將直線l:沿x軸翻折,得到一條新直線與x軸交于點A,與y軸交于點B,將拋物線C1沿x軸平移,得到一條新拋物線C2與y軸交于點D,與直線AB交于點E、點F.
(1)求直線AB的解析式;
(2)若線段DF∥x軸,求拋物線C2的解析式;
(3)在(2)的條件下,若點F在y軸右側,過F作FH⊥x軸于點G,與直線l交于點H,一條直線m(m不過△AFH的頂點)與AF交于點M,與FH交于點N,如果直線m既平分△AFH的面積,又平分△AFH的周長,求直線m的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市西城區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•西城區(qū)二模)已知:關于x的一元二次方程-x2+(m+4)x-4m=0,其中0<m<4.
(1)求此方程的兩個實數(shù)根(用含m的代數(shù)式表示);
(2)設拋物線y=-x2+(m+4)x-4m與x軸交于A、B兩點(A在B的左側),若點D的坐標為(0,-2),且AD•BD=10,求拋物線的解析式;
(3)已知點E(a,y1)、F(2a,y2)、G(3a,y3)都在(2)中的拋物線上,是否存在含有y1、y2、y3,且與a無關的等式?如果存在,試寫出一個,并加以證明;如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市西城區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•西城區(qū)二模)如圖,二次函數(shù)y1=ax2+bx+3的圖象與x軸相交于點A(-3,0)、B(1,0),交y軸于點C,C、D是二次函數(shù)圖象上的一對對稱點,一次函數(shù)y2=mx+n的圖象經(jīng)過B、D兩點.
(1)求二次函數(shù)的解析式及點D的坐標;
(2)根據(jù)圖象寫出y2>y1時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年北京市西城區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•西城區(qū)二模)已知:如圖,在正方形ABCD中,點E在CD邊上,點F在CB的延長線上,且FA⊥EA.求證:DE=BF.

查看答案和解析>>

同步練習冊答案