【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A<∠B,沿△ABC的中線(xiàn)CM將△CMA折疊,使點(diǎn)A落在點(diǎn)D處,若CD恰好與MB垂直,則tanA的值為__________________.
【答案】
【解析】
根據(jù)折疊的性質(zhì),可得:∠D=∠A,∠MCD=∠MCA,再由直角三角形斜邊中線(xiàn)的性質(zhì)可得出∠MCD=∠D,從而確定∠A的度數(shù),即可確定答案.
解:如圖:
∵CM是直角AABC的中線(xiàn)
∴СМ=АМ=МВ=АВ,
∴∠A=∠ACM,
由折疊的性質(zhì)可得:∠D=∠A,∠MCD=∠MCA,AM=DM,
∴MC=MD,∠A=∠ACM=∠MCD,
又∵AB⊥CD
∴∠CMB=∠DMB,∠CEB=∠MED=90°
∵∠B+∠A=90°,∠B+∠ECB=90°
∴∠A=∠ECB
∴∠A=∠ACM=∠MCE=∠ECB
∴∠A=∠ACB=30°
∴tanA=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A,B,C,D是⊙O上的四個(gè)點(diǎn).
(1)如圖1,若∠ADC=∠BCD=90°,AD=CD,求證:AC⊥BD;
(2)如圖2,若AC⊥BD.垂足為E,AB=4,DC=6,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的直徑,,,是上的三點(diǎn),,點(diǎn)是的中點(diǎn),點(diǎn)是上一動(dòng)點(diǎn),若的半徑為1,則的最小值為( )
A.1B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解方程.
(1)x2﹣2x﹣2=0.
(2)5x+2=3x2.
(3)5(x﹣3)2=x2﹣9.
(4)(y﹣3)(y﹣1)=8.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是正內(nèi)一點(diǎn),,,,將線(xiàn)段以點(diǎn)為旋轉(zhuǎn)中心逆時(shí)針旋轉(zhuǎn)得到線(xiàn)段,下列結(jié)論:①可以由繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到;②點(diǎn)與的距離為6;③;④;⑤. 其中正確的結(jié)論是______(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,是等邊三角形,、的延長(zhǎng)線(xiàn)分別交于點(diǎn)、,連接、,與相交于點(diǎn),給出下列結(jié)論:①;②;③;④.其中正確的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(8分)如圖,已知O是坐標(biāo)原點(diǎn),B、C兩點(diǎn)的坐標(biāo)分別為(3,-1)、(2,1)。
(1)以O(shè)點(diǎn)為位似中心在y軸的左側(cè)將△OBC放大到兩倍畫(huà)出圖形。
(2)寫(xiě)出B、C兩點(diǎn)的對(duì)應(yīng)點(diǎn)B、C的坐標(biāo);
(3)如果△OBC內(nèi)部一點(diǎn)M的坐標(biāo)為(x,y),寫(xiě)出M的對(duì)應(yīng)點(diǎn)M的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,延長(zhǎng)BC至點(diǎn)D,使DC=BC.延長(zhǎng)DA與⊙O的另一個(gè)交點(diǎn)為E,連接AC、CE.
(1)求證:∠B=∠D;
(2)若AB=13,BC﹣AC=7,求CE的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com