【題目】如圖,一次函數(shù)y=﹣x+5的圖象與坐標(biāo)軸交于AB兩點(diǎn),與反比例函數(shù)y的圖象交于MN兩點(diǎn),過點(diǎn)MMCy軸于點(diǎn)C,且CM1,過點(diǎn)NNDx軸于點(diǎn)D,且DN1.已知點(diǎn)Px軸(除原點(diǎn)O外)上一點(diǎn).

1)直接寫出M、N的坐標(biāo)及k的值;

2)將線段CP繞點(diǎn)P按順時(shí)針或逆時(shí)針旋轉(zhuǎn)90°得到線段PQ,當(dāng)點(diǎn)P滑動(dòng)時(shí),點(diǎn)Q能否在反比例函數(shù)的圖象上?如果能,求出所有的點(diǎn)Q的坐標(biāo);如果不能,請(qǐng)說明理由;

3)當(dāng)點(diǎn)P滑動(dòng)時(shí),是否存在反比例函數(shù)圖象(第一象限的一支)上的點(diǎn)S,使得以P、S、M、N四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出符合題意的點(diǎn)S的坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】1M1,4),N4,1),k4;(2)(2+2,﹣2+2)或(22,﹣22)或(﹣2,﹣2);(3)(5)或(,3).

【解析】

1)利用待定系數(shù)法即可解決問題;

2)分三種情形求解:如圖2,點(diǎn)Px軸的正半軸上時(shí),繞P順時(shí)針旋轉(zhuǎn)到點(diǎn)Q,根據(jù)△COP≌△PHQ,得COPH,OPQH,設(shè)Px,0),表示Qx+4x),代入反比例函數(shù)的關(guān)系式中可得Q的兩個(gè)坐標(biāo);如圖3,點(diǎn)Px軸的負(fù)半軸上時(shí);如圖4,點(diǎn)Px軸的正半軸上時(shí),繞P逆時(shí)針旋轉(zhuǎn)到點(diǎn)Q,同理可得結(jié)論.

3)分兩種情形分別求解即可;

解:(1)由題意M1,4),n4,1),

∵點(diǎn)My上,

k4;

2)當(dāng)點(diǎn)P滑動(dòng)時(shí),點(diǎn)Q能在反比例函數(shù)的圖象上;

如圖1,CPPQ,∠CPQ90°,

QQHx軸于H,

易得:△COP≌△PHQ,

COPH,OPQH,

由(2)知:反比例函數(shù)的解析式:y;

當(dāng)x1時(shí),y4

M1,4),

OCPH4

設(shè)Px,0),

Qx+4,x),

當(dāng)點(diǎn)Q落在反比例函數(shù)的圖象上時(shí),

xx+4)=4,

x2+4x+48,

x=﹣2±,

當(dāng)x=﹣2±時(shí),x+42+,如圖1,Q2+22+2);

當(dāng)x=﹣22時(shí),x+422,如圖2,Q22,22);

如圖3,CPPQ,∠CPQ90°,設(shè)Px0

PGHy軸,過CCGGH,過QQHGH,

易得:△CPG≌△PQH

PGQH4,CGPHx,

Qx4,﹣x),

同理得:﹣xx4)=4,

解得:x1x22

Q(﹣2,﹣2),

綜上所述,點(diǎn)Q的坐標(biāo)為(2+2,﹣2+2)或(22,﹣22)或(﹣2,﹣2).

3)當(dāng)MN為平行四邊形的對(duì)角線時(shí),根據(jù)MN的中點(diǎn)的縱坐標(biāo)為,可得點(diǎn)S的縱坐標(biāo)為5,即S5);

當(dāng)MN為平行四邊形的邊時(shí),易知點(diǎn)S的縱坐標(biāo)為3,即S,3);

綜上所述,滿足條件的點(diǎn)S的坐標(biāo)為(,5)或(3).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2x+cx軸交于A,B兩點(diǎn),且點(diǎn)B的坐標(biāo)為(3,0),與y軸交于點(diǎn)C,連接AC,BC,點(diǎn)P是拋物線上在第二象限內(nèi)的一個(gè)動(dòng)點(diǎn),點(diǎn)P的橫坐標(biāo)為a,過點(diǎn)Px軸的垂線,交AC于點(diǎn)Q

1)求A,C兩點(diǎn)的坐標(biāo).

2)請(qǐng)用含a的代數(shù)式表示線段PQ的長(zhǎng),并求出a為何值時(shí)PQ取得最大值.

3)試探究在點(diǎn)P運(yùn)動(dòng)的過程中,是否存在這樣的點(diǎn)Q,使得以BC,Q為頂點(diǎn)的三角形是等腰三角形?若存在,請(qǐng)寫出此時(shí)點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)動(dòng)員將小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度hm)與它的飛行時(shí)間ts)滿足二次函數(shù)關(guān)系,th的幾組對(duì)應(yīng)值如下表所示.

ts

0

0.5

1

1.5

2

hm

0

8.75

15

18.75

20

(1)求ht之間的函數(shù)關(guān)系式(不要求寫t的取值范圍);

(2)求小球飛行3s時(shí)的高度;

(3)問:小球的飛行高度能否達(dá)到22m?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB45°BC5,AC2DBC邊上的動(dòng)點(diǎn),連接AD,將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到線段AE,連接EC

1)如圖a,求證:CEBC;

2)連接ED,MAC的中點(diǎn),NED的中點(diǎn),連接MN,如圖b

①寫出DEAC,MN三條線段的數(shù)量關(guān)系,并說明理由;

②在點(diǎn)D運(yùn)動(dòng)的過程中,當(dāng)BD的長(zhǎng)為何值時(shí),ME兩點(diǎn)之間的距離最。孔钚≈凳   ,請(qǐng)直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,若點(diǎn)P的橫坐標(biāo)和縱坐標(biāo)相等,則稱點(diǎn)P為完美點(diǎn).已知二次函數(shù)的圖象上有且只有一個(gè)完美點(diǎn),且當(dāng)時(shí),函數(shù)的最小值為﹣3,最大值為1,則m的取值范圍是( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,CD是斜邊AB上的中線,以CD為直徑的⊙O分別交AC、BC于點(diǎn)M、N,過點(diǎn)NNEAB,垂足為E

1)若⊙O的半徑為AC6,求BN的長(zhǎng);

2)求證:NE與⊙O相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了維護(hù)國(guó)家主權(quán)和海洋權(quán)力,海監(jiān)部門對(duì)我國(guó)領(lǐng)海實(shí)現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時(shí)50海里的速度向正東方航行,在處測(cè)得燈塔在北偏東方向上,繼續(xù)航行1小時(shí)到達(dá)處,此時(shí)測(cè)得燈塔在北偏東方向上.

(1)求的度數(shù);

(2)已知在燈塔的周圍25海里內(nèi)有暗礁,問海監(jiān)船繼續(xù)向正東方向航行是否安全?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+3x+m-1=0的兩個(gè)實(shí)數(shù)根分別為x1,x2

(1)求m的取值范圍.

(2)若2(x1+x2)+ x1x2+10=0.求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面內(nèi)。點(diǎn)為線段上任意一點(diǎn).對(duì)于該平面內(nèi)任意的點(diǎn),若滿足小于等于則稱點(diǎn)為線段限距點(diǎn)”.

1)在平面直角坐標(biāo)系中,若點(diǎn).

①在的點(diǎn)中,是線段限距點(diǎn)的是 ;

②點(diǎn)P是直線上一點(diǎn),若點(diǎn)P是線段AB限距點(diǎn),請(qǐng)求出點(diǎn)P橫坐標(biāo)的取值范圍.

2)在平面直角坐標(biāo)系中,若點(diǎn).若直線上存在線段AB限距點(diǎn),請(qǐng)直接寫出的取值范圍

查看答案和解析>>

同步練習(xí)冊(cè)答案