已知二次函數(shù)y1=ax2+bx+c(a≠0)與一次函數(shù)y2=kx+b(k≠0)的圖象相交于點(diǎn)A(-2,4),B(8,2)(如圖所示),則能使y1>y2成立的x的取值范圍是   
【答案】分析:先觀察圖象確定拋物線y1=ax2+bx+c和一次函數(shù)y2=kx+b(k≠0)的交點(diǎn)的橫坐標(biāo),即可求出y1>y2時(shí),x的取值范圍.
解答:解:由圖形可以看出:
拋物線y1=ax2+bx+c和一次函數(shù)y2=kx+b(k≠0)的交點(diǎn)橫坐標(biāo)分別為-2,8,
當(dāng)y1>y2時(shí),x的取值范圍正好在兩交點(diǎn)之外,即x<-2或x>8.
點(diǎn)評(píng):此類(lèi)題可用數(shù)形結(jié)合的思想進(jìn)行解答,這也是速解習(xí)題常用的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知二次函數(shù)y1=x2-2x-1的圖象和反比例函數(shù)y2=
kx
的圖象都經(jīng)過(guò)點(diǎn)(1,a).
(1)求a的值;
(2)試在下圖所示的直角坐標(biāo)系中,畫(huà)出該二次函數(shù)及反比例函數(shù)的圖象,并利用圖象比較y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y1=ax2+bx+c(a≠0)的圖象經(jīng)過(guò)三點(diǎn)(1,0),(-3,0),(0,-
32
).精英家教網(wǎng)
(1)求二次函數(shù)的解析式.
(2)在給定的直角坐標(biāo)系中作出這個(gè)函數(shù)的圖象,并觀察圖象,寫(xiě)出x為何值,y<0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y1=ax2+bx+c與一次函數(shù)y2=kx+m的圖象相交于點(diǎn)A(-2,4),B(8,2),則能使y1<y2成立的x的取值范圍是
-2<x<8
-2<x<8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•吳江市模擬)如圖,已知二次函數(shù)y1=ax2+bx+c與一次函數(shù)y2=kx+m的圖象相交于A(-1,2)、B(4,1)兩點(diǎn),則關(guān)于x的不等式ax2+bx+c>kx+m的解集是
x<-1或x>4
x<-1或x>4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y1=ax2+bx-3的圖象經(jīng)過(guò)點(diǎn)A(2,-3),B(-1,0),與y軸交于點(diǎn)C,與x軸另一交點(diǎn)交于點(diǎn)D.
(1)求二次函數(shù)的解析式;
(2)求點(diǎn)C、點(diǎn)D的坐標(biāo);
(3)若一條直線y2,經(jīng)過(guò)C、D兩點(diǎn),請(qǐng)直接寫(xiě)出y1>y2時(shí),x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案