【題目】如圖,在正方形ABCD中,點E、F在對角線BD上,且BF=DE.
⑴求證:四邊形AECF是菱形.
⑵若AB=2,BF=1,求四邊形AECF的面積.
【答案】(1)證明見解析;
(2)四邊形AECF的面積為4﹣2.
【解析】試題分析:(1)根據(jù)正方形的性質(zhì),可得正方形的四條邊相等,對角線平分對角,根據(jù) SAS,可得△ABF與△CBF與△CDE與△ADE的關系,根據(jù)三角形全等,可得對應邊相等,再根據(jù)四條邊相等的四邊形,可得證明結(jié)果;
(2)根據(jù)正方形的邊長、對角線,可得直角三角形,根據(jù)勾股定理,可得AC、EF的長,根據(jù)菱形的面積公式,可得答案.
試題解析:(1)證明:正方形ABCD中,對角線BD,
∴AB=BC=CD=DA,
∠ABF=∠CBF=∠CDE=∠ADE=45°.
∵BF=DE,
∴△ABF≌△CBF≌△DCE≌△DAE(SAS).
AF=CF=CE=AE
∴四邊形AECF是菱形;
(2)∵AB=2,∴AC=BD=
∴OA=OB==2.
∵BF=1,
∴OF=OB-BF=2-1.
∴S四邊形AECF=ACEF=.
科目:初中數(shù)學 來源: 題型:
【題目】下面是一個數(shù)值轉(zhuǎn)換機的示意圖.
(1)當輸入x=-4,y=1時,則輸出結(jié)果為 ,當輸入x=-1,y=2,則輸出結(jié)果為 .
(2)用含x、y的代數(shù)式表示輸出結(jié)果為 .
(3)若輸入x的值為1,輸出結(jié)果為11時,求輸入y的值.
(4)若(1)中輸出的兩個結(jié)果依次對應數(shù)軸上的點A,B,點C為A、B之間的一個動點,若將數(shù)軸以點C為折點,將此數(shù)軸向右對折,若A點與數(shù)軸上的D點重合,且B、D兩點之間的距離為1,則點C在數(shù)軸上表示的數(shù)為 .(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,第一次將△OAB變換成△OA1B1,第二次將△OA1B1變換成△OA2B2,第三次將△OA2B2變換成△OA3B3,已知A(1,3),A1(2,3),A2(4,3),A3(8,3),B(2,0),B1(4,0),B2(8,0),B3(16,0).將△OAB進行n次變換得到△OAnBn,則An(___,__),Bn(_____,_____).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y=a(x-6)2+h.已知球網(wǎng)與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m。
(1)當h=2.6時,求y與x的關系式(不要求寫出自變量x的取值范圍)
(2)當h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),已知小正方形 ABCD 的面積為1,把它的各邊延長一倍得到新正方形 A 1 B 1 C 1 D 1 ;把正方形 A 1 B 1 C 1 D 1 邊長按原法延長一倍得到正方形 A 2 B 2 C 2 D 2 (如圖(2));以此下去,則正方形 A n B n C n D n 的面積為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC繞點C順時針旋轉(zhuǎn)得△A1B1C,當A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是 ( 。
A. B. 2 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖, ,EM平分,并與CD邊交于點M.DN平分,
并與EM交于點N.
(1)依題意補全圖形,并猜想的度數(shù)等于 ;
(2)證明以上結(jié)論.
證明:∵ DN平分,EM平分,
∴,
= .
(理由: )
∵,
∴= ×(∠ +∠ )= ×90°= °.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小凡與小光從學校出發(fā)到距學校 5 千米的圖書館看書,途中小凡從路邊超市買了一些學習用品,如圖反應了他們倆人離開學校的路程 s(千米)與時間 t(分鐘)的關系,請根據(jù)圖象提供的信息回答問題:
(1) 先出發(fā),先出發(fā)了 分鐘;
(2)當 t= 分鐘時,小凡與小光在去圖書館的路上相遇;
(3)小凡與小光從學校到圖書館的平均速度各是多少千米/小時?(不包括停留的時間)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正在改造的人行道工地上,有兩種鋪設路面材料:一種是長為acm、寬為bcm的矩形板材(如圖1),另一種是邊長為ccm的正方形地磚(如圖2).
(1)用多少塊如圖2所示的正方形地磚能拼出一個新的正方形?(只要寫出一個符合條件的答案即可),并寫出新正方形的面積;
(2)現(xiàn)用如圖1所示的四塊矩形板材鋪成一個大矩形(如圖3)或大正方形(如圖4),中間分別空出一個小矩形和一個小正方形.
①試比較中間的小矩形和中間的小正方形的面積哪個大?大多少?
②如圖4,已知大正方形的邊長比中間小正方形的邊長多20cm,面積大3200cm2.如果選用如圖2所示的正方形地磚(邊長為20cm)鋪設圖4中間的小正方形部分,那么能否做到不用切割地磚就可直接密鋪(縫隙忽略不計)呢?若能,請求出密鋪所需地磚的塊數(shù);若不能,至少要切割幾塊如圖2的地磚?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com