(2009•十堰)如圖①,四邊形ABCD是正方形,點G是BC上任意一點,DE⊥AG于點E,BF⊥AG于點F.
(1)求證:DE-BF=EF;
(2)當點G為BC邊中點時,試探究線段EF與GF之間的數(shù)量關(guān)系,并說明理由;
(3)若點G為CB延長線上一點,其余條件不變.請你在圖②中畫出圖形,寫出此時DE、BF、EF之間的數(shù)量關(guān)系(不需要證明).

【答案】分析:(1)本題的關(guān)鍵是求三角形ADE和ABF全等,以此來得出DE=AF=AE+EF=BE+EF,這兩個三角形中已知的條件有AD=BA,一組直角,關(guān)鍵是再找出一組對應角相等,可通過證明∠DAF和∠ABF來實現(xiàn).(通過平行和等角的余角相等來證得)
(2)可通過證明三角形ABG、ABF、BFG相似來得出AB,BG;AF,BF;BF,BG之間的比例關(guān)系,根據(jù)AB=2BG,來得出AF,BF,BF,F(xiàn)G之間的比例關(guān)系,然后根據(jù)(1)中得出的結(jié)果來求BF,F(xiàn)G的大小關(guān)系.
(3)方法同(1)還是正三角形ADE和ABF全等,得出DE=AF,BF=AE,只不過本題的結(jié)論是DE+BF=EF.
解答:(1)證明:∵四邊形ABCD是正方形,BF⊥AG,DE⊥AG,
∴DA=AB,∠BAF+∠DAE=∠DAE+∠ADE=90°,
∴∠BAF=∠ADE,
∴△ABF≌△DAE,
∴BF=AE,AF=DE,
∴DE-BF=AF-AE=EF.

(2)解:EF=2FG,
理由如下:
∵AB⊥BC,BF⊥AG,AB=2BG,
∵∠BAG=∠GBF,
∴△ABG∽△BFG,
同理可得,△AFB∽△BFG∽△ABG,
===2,
∴AF=2BF,BF=2FG,
由(1)知,AE=BF,
∴EF=AF-AE=AF-BF=BF=2FG.

(3)解:如圖,DE+BF=EF.
點評:本題中通過全等三角形得出簡單的線段相等以及利用相似三角形的對應邊成比例是解題的關(guān)鍵所在.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2011年浙江省杭州市義蓬一中中考數(shù)學一模試卷(解析版) 題型:解答題

(2009•十堰)如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.

(1)求拋物線的解析式;
(2)設(shè)拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由;
(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2009•十堰)如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.

(1)求拋物線的解析式;
(2)設(shè)拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由;
(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學模擬試卷(瓜瀝二中 金華 沈國芳)(解析版) 題型:解答題

(2009•十堰)如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.

(1)求拋物線的解析式;
(2)設(shè)拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由;
(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年江蘇省鹽城市解放路實驗學校中考數(shù)學模擬試卷(解析版) 題型:解答題

(2009•十堰)如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.

(1)求拋物線的解析式;
(2)設(shè)拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由;
(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年湖北省十堰市中考數(shù)學試卷(解析版) 題型:解答題

(2009•十堰)如圖①,已知拋物線y=ax2+bx+3(a≠0)與x軸交于點A(1,0)和點B(-3,0),與y軸交于點C.

(1)求拋物線的解析式;
(2)設(shè)拋物線的對稱軸與x軸交于點M,問在對稱軸上是否存在點P,使△CMP為等腰三角形?若存在,請直接寫出所有符合條件的點P的坐標;若不存在,請說明理由;
(3)如圖②,若點E為第二象限拋物線上一動點,連接BE、CE,求四邊形BOCE面積的最大值,并求此時E點的坐標.

查看答案和解析>>

同步練習冊答案