梯形ABCD中,AD∥BC,DE∥AB,對角線BD平分∠ABC,
(1)求證:四邊形ABED是菱形.
(2)若∠ABC與∠C互余,BC=8,CD=4,求梯形ABCD的周長.
分析:(1)由已知條件可證明四邊形ABED是平行四邊形,再通過平行線的性質和角平分線的性質證明其鄰邊相等即可證明四邊形ABED是菱形;
(2)設AB=x,由(1)可知四邊形ABED是菱形,所以AD=AB=BE=ED=x,再有條件∠ABC與∠C互余,可證明三角形EDC是直角三角形,利用勾股定理建立方程求出x的值即可.
解答:(1)證明:∵AD∥BC,DE∥AB,
∴四邊形ABED是平行四邊形,
∵BD平分∠ABC,
∴∠ABE=∠EBD,
∵AB∥DE,
∴∠ABD=∠BDE,
∴∠EBD=∠BDE,
∴BE=DE,
∴四邊形ABDE是菱形;

(2)解:設AB=x,
∵四邊形ABED為菱形,
∴AD=AB=BE=ED=x,
∴CE=BC-BE=8-x,
∵∠DEC=∠ABC,∠ABC+∠C=90°,
∴∠DEC+∠C=90°,
∴∠CDE=90°
∴DE2+CD2=CE2√
∴42+x2=(8-x)2,
∴x=3
∴梯形ABCD的周長=x+x+8+4=18.
點評:本題考查了梯形、勾股定理的運用、菱形的判定以及菱形的性質,難度一般,解答本題的關鍵是熟練掌握菱形的判定定理及菱形的性質.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,等腰梯形ABCD中,AD∥BC,AD=AB=CD=2,∠C=60°,M是BC的中點.
(1)求證:△MDC是等邊三角形;
(2)將△MDC繞點M旋轉,當MD(即MD′)與AB交于一點E,MC(即MC′)同時與AD交于一點F時,點E,F(xiàn)和點A構成△AEF.試探究△AEF的周長是否存在最小值?如果不存在,請說明理由;如果存在,請計算出△AEF周長的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在梯形ABCD中,AD∥BC,AB=AD,∠BAD的平分線AE分別交BD、BC于點G、E,連接精英家教網(wǎng)DE.
(1)求證:四邊形ABED是菱形;
(2)若ED⊥DC,∠ABC=60°,AB=2,求梯形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB=CD,點E在BC的延長線上,且∠BDE=∠ADC.求證:AB•BD=DE•AD.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在等腰梯形ABCD中,AD∥BC,AB=5,AD=6,BC=12,點E在AD邊上,且AE:ED=1:2,點P是AB邊上的一個動點,(P不與A,B重合)過點P作PQ∥CE交BC于點Q,設AP=x,CQ=y,則y與x之間的函數(shù)關系是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠ACB=45°,翻折梯形ABCD,使點C重合于點A,折痕精英家教網(wǎng)分別交邊CD、BC于點F、E,若AD=3,BC=12,
求:(1)CE的長;
(2)∠BAE的正切值.

查看答案和解析>>

同步練習冊答案