已知:關(guān)于x的方程ax2-(1-3a)x+2a-1=0.
(1)當(dāng)a取何值時(shí),二次函數(shù)y=ax2-(1-3a)x+2a-1的對(duì)稱軸是x=-2;
(2)求證:a取任何實(shí)數(shù)時(shí),方程ax2-(1-3a)x+2a-1=0總有實(shí)數(shù)根.
【答案】分析:(1)根據(jù)二次函數(shù)對(duì)稱軸求法得出x=-==-2,即可求出;
(2)利用一元二次方程根的判別式,證明其大于等于0即可.
解答:解:(1)當(dāng)對(duì)稱軸是x=-2,
∴x=-==-2,
解得:a=-1;

(2)①當(dāng)a=0時(shí),方程為一元一次方程,方程ax2-(1-3a)x+2a-1=0有一個(gè)實(shí)數(shù)根.
②∵當(dāng)a≠0時(shí),方程為一元二次方程,∴△=[-(1-3a)]2-4a(2a-1)=a2-2a+1=(a-1)2≥0,
∴方程有實(shí)數(shù)根,
∴a取任何實(shí)數(shù)時(shí),方程ax2-(1-3a)x+2a-1=0總有實(shí)數(shù)根.
點(diǎn)評(píng):此題主要考查了二次函數(shù)對(duì)稱軸求法以及根的判別式,熟練應(yīng)用此性質(zhì)是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的方程mx2-3(m-1)x+2m-3=0.
(1)求證:m取任何實(shí)數(shù)量,方程總有實(shí)數(shù)根;
(2)若二次函數(shù)y1=mx2-3(m-1)x+2m-3的圖象關(guān)于y軸對(duì)稱;
①求二次函數(shù)y1的解析式;
②已知一次函數(shù)y2=2x-2,證明:在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這兩個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y2均成立;
(3)在(2)條件下,若二次函數(shù)y3=ax2+bx+c的圖象經(jīng)過(guò)點(diǎn)(-5,0),且在實(shí)數(shù)范圍內(nèi),對(duì)于x的同一個(gè)值,這三個(gè)函數(shù)所對(duì)應(yīng)的函數(shù)值y1≥y3≥y2均成立,求二次函數(shù)y3=ax2+bx+c的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、已知:關(guān)于x的方程x2+2x=3-4k有兩個(gè)不相等的實(shí)數(shù)根(其中k為實(shí)數(shù))
(1)則k的取值范圍是
k<1

(2)若k為非負(fù)整數(shù),則此時(shí)方程的根是
-3或1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

3、已知:關(guān)于x的方程x2-kx-2=0.
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)方程的兩根為x1,x2,如果2(x1+x2)>x1x2,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的方程ax2-(1-3a)x+2a-1=0,求證:a取任何實(shí)數(shù)時(shí),方程ax2-(1-3a)x+2a-1=0總有實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的方程x2+kx-12=0,求證:方程有兩個(gè)不相等的實(shí)數(shù)根.

查看答案和解析>>

同步練習(xí)冊(cè)答案