【題目】如圖,在平面直角坐標(biāo)系中有一個四邊形OABC,其中CB∥x軸,OC=3,BC=2,∠OAB=45°.
(1)求點A,B的坐標(biāo);
(2)求出直線AB的解析式.
【答案】
(1)解:如圖,過B作BD⊥OA于D,則四邊形ODBC是矩形,
∴OD=BC=2,BD=OC=3,
∵∠OAB=45°,
∴AD=BD=3,
∴OA=5,
∴A(5,0),B(2,3)
(2)解:設(shè)直線AB的解析式為y=kx+b,
則 ,解得 ,
所以直線AB的解析式為y=﹣x+5
【解析】(1)過B作BD⊥OA于D,則四邊形ODBC是矩形,OD=BC=2,BD=OC=3,再根據(jù)∠OAB=45°,得出AD=BD=3,那么OA=5,進(jìn)而求出A,B的坐標(biāo).(2)利用待定系數(shù)法將A,B的坐標(biāo)代入即可求解.
【考點精析】解答此題的關(guān)鍵在于理解確定一次函數(shù)的表達(dá)式的相關(guān)知識,掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列命題中真命題為( )
A.多邊形的外角和為360°B.位似圖形不可能全等
C.正多邊形都是中心對稱圖形D.圓錐的主視圖一定是等邊三角形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=ax﹣b與正比例函數(shù)y=kx的圖象交于第三象限內(nèi)的點A,與y軸交于B(0,﹣4),且OA=AB,△AOB的面積為6.
(1)求兩個函數(shù)的解析式;
(2)若有一個點M(2,0),直線BM與AO交于點P,求點P的坐標(biāo);
(3)在x軸上是否存在點E,使S△ABE=5?若存在,求點E的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方體的長為15cm,寬為10cm,高為20cm,點B距離C點5cm,一只螞蟻如果要沿著長方體的表面從點A爬到點B,徐亞爬行的最短距離是cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.﹣5是﹣25的平方根
B.3是(﹣3)2的算術(shù)平方根
C.(﹣2)2的平方根是2
D.8的平方根是±4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com