【題目】如圖,在已知的ABC,按以下步驟作圖:①分別以B,C為圓心,以大于BC的長為半徑作弧,兩弧相交于兩點(diǎn)M,N;②作直線MNAB于點(diǎn)D,連接CD.CD=AC,A=50°,則∠ACB的度數(shù)為(  )

A. 90°B. 95°C. 100°D. 105°

【答案】D

【解析】

根據(jù)題目中的作圖方法確定出,MN是線段BC的垂直平分線,再根據(jù)線段垂直平分線上的點(diǎn)到線段兩端點(diǎn)的距離相等得到CD=BD;根據(jù)等邊對(duì)等角及三角形內(nèi)角和的知識(shí)可求出∠ADC和∠ACD的度數(shù),進(jìn)而可得∠BDC的度數(shù),再結(jié)合CD=BD,可得∠DCB的度數(shù),至此即可求得∠ACB的度數(shù).

解:根據(jù)作圖過程,可知MN是線段BC的垂直平分線,

BD=CD,

∴∠B=DCB,

CD=AC,∠A=50°,

∴∠A=CDA=50°,

∴∠ACD=80°,∠CDB=130°,

∵在△BCD中,BD=CD,∠CDB=130°,

∴∠B=DCB=25°,

∴∠ACB=DCB+ACD=105°.

故答案為D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形中,.點(diǎn)從點(diǎn)出發(fā),沿勻速運(yùn)動(dòng);點(diǎn)從點(diǎn)出發(fā),沿的路徑勻速運(yùn)動(dòng).兩點(diǎn)同時(shí)出發(fā),在點(diǎn)處首次相遇后,點(diǎn)的運(yùn)動(dòng)速度每秒提高了,并沿的路徑勻速運(yùn)動(dòng);點(diǎn)保持速度不變,繼續(xù)沿原路徑勻速運(yùn)動(dòng),某一時(shí)刻兩點(diǎn)在長方形某一邊上的點(diǎn)處第二次相遇.若點(diǎn)的速度為.

備用圖

1)點(diǎn)原來的速度為___________.

2,兩點(diǎn)在點(diǎn)處首次相遇后,再經(jīng)過___________秒后第二次在點(diǎn)相遇.

3點(diǎn)在___________邊上.此時(shí)___________.

4)在點(diǎn)相遇后,兩點(diǎn)沿原來的方向繼續(xù)前進(jìn).又經(jīng)歷了次相遇后停止運(yùn)動(dòng),請(qǐng)問此時(shí)兩點(diǎn)停在長方形邊上的什么位置?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:如圖1,在四邊形ABCD的邊AB上任取一點(diǎn)E(點(diǎn)E不與點(diǎn)A、點(diǎn)B重合),分別連接ED,EC,可以把四邊形ABCD分成三個(gè)三角形,如果其中有兩個(gè)三角形相似,我們就把E叫做四邊形ABCD的邊AB上的相似點(diǎn);如果這三個(gè)三角形都相似,我們就把E叫做四邊形ABCD的邊AB上的強(qiáng)相似點(diǎn).解決問題:

(1)如圖1,∠A=∠B=∠DEC=55°,試判斷點(diǎn)E是否是四邊形ABCD的邊AB上的相似點(diǎn),并說明理由;

(2)如圖2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四點(diǎn)均在正方形網(wǎng)格(網(wǎng)格中每個(gè)小正方形的邊長為1)的格點(diǎn)(即每個(gè)小正方形的頂點(diǎn))上,試在圖2中畫出矩形ABCD的邊AB上的一個(gè)強(qiáng)相似點(diǎn)E;

拓展探究:

(3)如圖3,將矩形ABCD沿CM折疊,使點(diǎn)D落在AB邊上的點(diǎn)E處.若點(diǎn)E恰好是四邊形ABCM的邊AB上的一個(gè)強(qiáng)相似點(diǎn),試探究AB和BC的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,以對(duì)角線BD為一邊構(gòu)造一個(gè)矩形BDEF,使得另一邊EF過原矩形的頂點(diǎn)C.

(1)設(shè)Rt△CBD的面積為S1,Rt△BFC的面積為S2,Rt△DCE的面積為S3,則S1__ __S2+S3;(填“>”“=”或“<”)

(2)寫出圖中的三對(duì)相似三角形,并選擇其中一對(duì)進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD,以點(diǎn)A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點(diǎn),再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點(diǎn)P,作射線AP,交CD于點(diǎn)M。

(1)若∠ACD=114°,求∠MAB的度數(shù);

(2)若CN⊥AM,垂足為N,求證:△ACN≌△MCN。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017山東德州第21題)如圖所示,某公路檢測中心在一事故多發(fā)地帶安裝了一個(gè)測速儀,檢測點(diǎn)設(shè)在距離公路10mA處,測得一輛汽車從B處行駛到C處所用的時(shí)間為0.9.已知∠B=30°,C=45°

(1)求B,C之間的距離;(保留根號(hào))

(2)如果此地限速為80km/h,那么這輛汽車是否超速?請(qǐng)說明理由.(參考數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b的圖象與x軸交點(diǎn)為A-30),與y軸交點(diǎn)為B,且與正比例函數(shù)的圖象的交于點(diǎn)Cm,4).

1)求m的值及一次函數(shù)y=kx+b的表達(dá)式;

2)若點(diǎn)Py軸上一點(diǎn),且BPC的面積為6,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本小題滿分8如圖,點(diǎn)E、F為線段BD的兩個(gè)三等分點(diǎn),四邊形AECF是菱形

1試判斷四邊形ABCD的形狀,并加以證明;

2若菱形AECF的周長為20,BD為24,試求四邊形ABCD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校園文學(xué)社為了解本校學(xué)生對(duì)本社一種報(bào)紙四個(gè)版面的喜歡情況,隨機(jī)抽取部分學(xué)生做了一次問卷調(diào)查,要求學(xué)生選出自己喜歡的一個(gè)版面,將調(diào)查數(shù)據(jù)進(jìn)行了整理、繪制成部分統(tǒng)計(jì)圖如下:

請(qǐng)根據(jù)圖中信息,解答下列問題:

(1)第一版=____%,“第四版”對(duì)應(yīng)扇形的圓心角為________°;

(2)請(qǐng)你補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校有1200名學(xué)生,請(qǐng)你估計(jì)全校學(xué)生中最喜歡“第三版”的人數(shù).

查看答案和解析>>

同步練習(xí)冊答案