【題目】如圖,已知一條直線過點(diǎn)(0,4),且與拋物線y=x2交于A,B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)是-2.

(1)求這條直線的解析式及點(diǎn)B的坐標(biāo);

(2)在x軸上是否存在點(diǎn)C,使得△ABC是直角三角形?若存在,求出點(diǎn)C的坐標(biāo),若不存在,請說明理由;

(3)過線段AB上一點(diǎn)P,作PM∥x軸,交拋物線于點(diǎn)M,點(diǎn)M在第一象限,點(diǎn)N(0,1),當(dāng)點(diǎn)M的橫坐標(biāo)為何值時,MN+3MP的長度最大?最大值是多少?

【答案】(1)y=x+4,B(8,16)(2)存在.點(diǎn)C的坐標(biāo)為(-,0),(0,0),(6,0),(32,0)(3)18

【解析】試題分析:(1)首先求得點(diǎn)A的坐標(biāo),然后利用待定系數(shù)法確定直線的解析式,從而求得直線與拋物線的交點(diǎn)坐標(biāo);

2)如圖1,過點(diǎn)BBG∥x軸,過點(diǎn)AAG∥y軸,交點(diǎn)為G,然后分若∠BAC=90°,則AB2+AC2=BC2;若∠ACB=90°,則AB2=AC2+BC2;若∠ABC=90°,則AB2+BC2=AC2三種情況求得m的值,從而確定點(diǎn)C的坐標(biāo);

3)設(shè)Ma,a2),如圖2,設(shè)MPy軸交于點(diǎn)Q,首先在Rt△MQN中,由勾股定理得MN=a2+1,然后根據(jù)點(diǎn)P與點(diǎn)M縱坐標(biāo)相同得到x=,從而得到MN+3PM=﹣a2+3a+9,確定二次函數(shù)的最值即可.

試題解析:(1yx4,B(816) 

2)存在.

過點(diǎn)BBGx軸,過點(diǎn)AAGy軸,交點(diǎn)為G

AG2BG2AB2,

A(21),B(8,16)可求得AB2325

.設(shè)點(diǎn)C(m,0),

同理可得AC2(m2)212m24m5,

BC2(m8)2162m216m320,

BAC90°,則AB2AC2BC2,即325m24m5m216m320,解得m=-;

ACB90°,則AB2AC2BC2,即325m24m5m216m320,解得m0m6;

ABC90°,則AB2BC2AC2,即m24m5m216m320325,解得m32

點(diǎn)C的坐標(biāo)為(,0),(0,0)(6,0),(32,0) 

3)設(shè)M(a,a2),

設(shè)MPy軸交于點(diǎn)Q,在RtMQN中,

由勾股定理得MN

點(diǎn)P與點(diǎn)M縱坐標(biāo)相同,

x4a2,

x= ,

點(diǎn)P的橫坐標(biāo)為,

MPa,

MN3PMa213(a)=-a23a9=- (a6)218,

2≤6≤8,

當(dāng)a6時,取最大值18,

當(dāng)M的橫坐標(biāo)為6時,MN+3PM的長度的最大值是18

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)閱讀思考:

小迪在學(xué)習(xí)過程中,發(fā)現(xiàn)數(shù)軸上兩點(diǎn)間的距離可以用表示這兩點(diǎn)數(shù)的差來表示,探索過程如下:

如圖1所示,線段AB,BC,CD的長度可表示為:AB341BC54﹣(﹣1),CD3=(﹣1)﹣(﹣4),于是他歸納出這樣的結(jié)論:如果點(diǎn)A表示的數(shù)為a,點(diǎn)B表示的數(shù)為b,當(dāng)ba時,ABba(較大數(shù)﹣較小數(shù)).

2)嘗試應(yīng)用:

①如圖2所示,計(jì)算:OE   EF   ;

②把一條數(shù)軸在數(shù)m處對折,使表示﹣192019兩數(shù)的點(diǎn)恰好互相重合,則m   ;

3)問題解決:

①如圖3所示,點(diǎn)P表示數(shù)x,點(diǎn)M表示數(shù)﹣2,點(diǎn)N表示數(shù)2x+8,且MN4PM,求出點(diǎn)P和點(diǎn)N分別表示的數(shù);

②在上述①的條件下,是否存在點(diǎn)Q,使PQ+QN3QM?若存在,請直接寫出點(diǎn)Q所表示的數(shù);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016山西。┪沂∧程O果基地銷售優(yōu)質(zhì)蘋果,該基地對需要送貨且購買量在2000kg﹣5000kg(含2000kg5000kg)的客戶有兩種銷售方案(客戶只能選擇其中一種方案):

方案A:每千克5.8元,由基地免費(fèi)送貨.

方案B:每千克5元,客戶需支付運(yùn)費(fèi)2000元.

(1)請分別寫出按方案A,方案B購買這種蘋果的應(yīng)付款y(元)與購買量xkg)之間的函數(shù)表達(dá)式;

(2)求購買量x在什么范圍時,選用方案A比方案B付款少;

(3)某水果批發(fā)商計(jì)劃用20000元,選用這兩種方案中的一種,購買盡可能多的這種蘋果,請直接寫出他應(yīng)選擇哪種方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O是直線AB上的一點(diǎn),ODOC,過點(diǎn)O作射線OE平分∠BOC.

(1)如圖1,如果∠AOC=50°,依題意補(bǔ)全圖形,寫出求∠DOE度數(shù)的思路(不需要寫出完整的推理過程);

(2)當(dāng)OD繞點(diǎn)O順時針旋轉(zhuǎn)一定的角度得到圖2,使得直角邊OC在直線AB的上方,若∠AOC=α,其他條件不變,依題意補(bǔ)全圖形,并求∠DOE的度數(shù)(用含α的代數(shù)式表示);

(3)當(dāng)OD繞點(diǎn)O繼續(xù)順時針旋轉(zhuǎn)一周,回到圖1的位置,在旋轉(zhuǎn)過程中你發(fā)現(xiàn)∠AOC與∠DOE(0°≤∠AOC180°,0°≤∠DOE180°)之間有怎樣的數(shù)量關(guān)系?請直接寫出你的發(fā)現(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的邊ABAC的垂直平分線相交于點(diǎn)P.連接PB、PC,若∠A=70°,則∠PBC的度數(shù)是 ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角三角形AOB中,O為坐標(biāo)原點(diǎn),∠AOB=90°,B=30°,若點(diǎn)A在反比例函數(shù)y= (x>0)圖像上運(yùn)動,那么點(diǎn)B必在函數(shù)( )的圖像上運(yùn)動.

A B. C. D

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知∠AOB,以點(diǎn)O為圓心,適當(dāng)?shù)拈L為半徑畫弧,交OA于點(diǎn)M,交OB于點(diǎn)N;分別以點(diǎn)M,N為圓心,大于MN的長為半徑畫弧,兩弧在∠AOB的內(nèi)部相交于點(diǎn)C;則射線OC為∠AOB的平分線.依據(jù)是___________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】滿足下列條件的,不是直角三角形的是(

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為響應(yīng)學(xué)雷鋒、樹新風(fēng)、做文明中學(xué)生號召,某校開展了志愿者服務(wù)活動,活動項(xiàng)目有戒毒宣傳”、“文明交通崗”、“關(guān)愛老人”、“義務(wù)植樹”、“社區(qū)服務(wù)等五項(xiàng),活動期間,隨機(jī)抽取了部分學(xué)生對志愿者服務(wù)情況進(jìn)行調(diào)查,結(jié)果發(fā)現(xiàn),被調(diào)查的每名學(xué)生都參與了活動,最少的參與了1項(xiàng),最多的參與了5項(xiàng),根據(jù)調(diào)查結(jié)果繪制了如圖所示不完整的折線統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖.

(1)被隨機(jī)抽取的學(xué)生共有多少名?

(2)在扇形統(tǒng)計(jì)圖中,求活動數(shù)為3項(xiàng)的學(xué)生所對應(yīng)的扇形圓心角的度數(shù),并補(bǔ)全折線統(tǒng)計(jì)圖;

(3)該校共有學(xué)生2000人,估計(jì)其中參與了4項(xiàng)或5項(xiàng)活動的學(xué)生共有多少人?

查看答案和解析>>

同步練習(xí)冊答案