【題目】如圖,點D、E分別在AB、AC上,BECD相交于點O,已知∠B=C,現(xiàn)添加下面的哪一個條件后,仍不能判定ABE≌△ACD(  )

A. AD=AEB. AB=AC

C. BE=CDD. AEB=ADC

【答案】D

【解析】

已知∠B=C,再加上條件∠A=A,根據(jù)全等三角形的判定定理可得添加條件必須是邊相等.

解:已知∠B=C,∠A=A,

若添加AD=AE,可利用AAS定理證明△ABE≌△ACD,故A選項不合題意;

若添加AB=AC,可利用ASA定理證明△ABE≌△ACD,故B選項不合題意;

若添加BE=CD,可利用AAS定理證明△ABE≌△ACD,故C選項不合題意;

若添加∠ADC=BEA,不能證明△ABE≌△ACD,故此選項符合題意;

故選:D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】120194月,中國新聞出版研究院發(fā)布了《第十六次全國國民閱讀調(diào)查報告》,以下是小明根據(jù)該報告提供的數(shù)據(jù)制作的“2017-2018年我國未成年人圖書閱讀率統(tǒng)計圖的一部分.

報告中提到,20189-13周歲少年兒童圖書閱讀率比2017年提高了3.1個百分點,2017年我國0-17周歲未成年人圖書閱讀率為84.8%.

根據(jù)以上信息解決下列問題:

①寫出圖1a的值;

②補全圖1;

2)讀書社的小明在搜集資料的過程中,發(fā)現(xiàn)了《人民日報》曾經(jīng)介紹過多種閱讀法,他在班上同學們介紹了其中6種,并調(diào)查了全班40名同學對這6種閱讀法的認可程度,制作了如下的統(tǒng)計表和統(tǒng)計圖:

根據(jù)以上信息解決下列問題:

①補全統(tǒng)計表及圖2;

②根據(jù)調(diào)查結(jié)果估計全年級500名同學最愿意使用.精華提煉法的人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校為美化校園,計劃對面積為1800m2的區(qū)域進行綠化,安排甲、乙兩個工程隊完成.已知甲隊每天能完成綠化的面積是乙隊每天能完成綠化的面積的2倍,并且在獨立完成面積為400 m2區(qū)域的綠化時,甲隊比乙隊少用4.

1)求甲、乙兩工程隊每天能完成綠化的面積分別是多少m2

2)若學校每天需付給甲隊的綠化費用是0.4萬元,乙隊為0.25萬元,要使這次的綠化總費用不超過8萬元,至少應安排甲隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,,,點上運動,設長為的面積為.從小到大變化時,也隨之變化.

(1)求出之間的關系式.

(2)完成下面的表格

4

5

6

7

6

(3)由表格看出當每增加時,如何變化?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2016四川省攀枝花市)某市為了鼓勵居民節(jié)約用水,決定實行兩級收費制度.若每月用水量不超過14噸(含14噸),則每噸按政府補貼優(yōu)惠價m元收費;若每月用水量超過14噸,則超過部分每噸按市場價n元收費.小明家3月份用水20噸,交水費49元;4月份用水18噸,交水費42元.

(1)求每噸水的政府補貼優(yōu)惠價和市場價分別是多少?

(2)設每月用水量為x噸,應交水費為y元,請寫出yx之間的函數(shù)關系式;

(3)小明家5月份用水26噸,則他家應交水費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】樂樂家附近的商場為了吸引顧客,設立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,為轉(zhuǎn)盤直徑,如圖所示,并規(guī)定:顧客消費50元(含50元)以上,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,如果轉(zhuǎn)盤停止后,指針正好對準9折、8折、7折區(qū)域,則顧客就可以獲得相應區(qū)域的優(yōu)惠.

1)某顧客在該商場消費40元,是否可以獲得轉(zhuǎn)動轉(zhuǎn)盤的機會?

2)某顧客在該商場正好消費66元,則他轉(zhuǎn)動一次轉(zhuǎn)盤,獲得三種打折優(yōu)惠的概率分別是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小王周末騎電動車從家里出發(fā)去商場買東西,當他騎了一段路時,想起要買一本書,于是原路返回到剛經(jīng)過的新華書店,買到書后繼續(xù)前往商場,如圖是他離家的距離(米)與時間(分鐘)之間的關系示意圖,請根據(jù)圖中提供的信息回答下列問題:

1)在此變化過程中,自變量是 ,因變量是

2)小王在新華書店停留了多長時間?

3)買到書后,小王從新華書店到商場的騎車速度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】問題情境:如圖1,ABCD,PAB=130°,PCD=120°,求∠APC的度數(shù).

小明的思路是:過PPEAB,通過平行線性質(zhì)來求∠APC.

(1)按小明的思路,易求得∠APC的度數(shù)為_____度;

(2)問題遷移:如圖2,ABCD,點P在射線OM上運動,記∠PAB=α,PCD=β,當點PB、D兩點之間運動時,問∠APCα、β之間有何數(shù)量關系?請說明理由;

(3)(2)的條件下,如果點PB、D兩點外側(cè)運動時(點P與點O、B、D三點不重合),請直接寫出∠APCα、β之間的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于平面直角坐標系xOy中的點,若點的坐標為(其中k為常數(shù),且),則稱點為點Pk屬派生點”.

例如:“4屬派生點,即.

1)點“2屬派生點的坐標為________

2)若點P“3屬派生點的坐標為,求點P的坐標;

3)若點Py軸的正半軸上,點P“k屬派生點點,且點y軸的距離不小于線段OP長度的5倍,則k的取值范圍是________________.

查看答案和解析>>

同步練習冊答案