【題目】2008年奧運會期間,一輛大巴車在一條南北方向的道路上來回運送旅客,某一天早晨該車從A地出發(fā),晚上到達(dá)B地,預(yù)定向北為正方向,當(dāng)天行駛記錄如下(單位:千米)

+18-9,+7-14,-6,+13-6,-8

請你根據(jù)計算回答下列問題:

1B地在A地何方?相距多少千米?

2)該車這一天共行駛多少千米?

3)若該車每千米耗油0.4升,這一天共耗油多少升?

【答案】1BA南邊5千米處;(281千米;(332.4

【解析】

1)將所有有理數(shù)相加,得到結(jié)果為-5,可判斷為向南方向;

2)所有有理數(shù)絕對值的和為行駛的總距離;

3)用行駛的總距離乘油耗得一天中的耗油量

1)∵+18-9+7-14-6+13-6-8=5

BA的南面,距離為5千米;

2)∵+

∴該車一天共行駛81千米;

381×0.4=32.4(升)

∴該車一天共耗油32.4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按照下列要求畫圖并填空:

1)畫出邊的高,垂足為,則點到直線的距離是線段______的長.

2)用直尺和圓規(guī)作出的邊的垂直平分線,分別交直線于點、,聯(lián)結(jié),則線段______(保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】﹣14+3tan30°﹣ +(2017+π)0+( 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù) 的圖象交于A(m,6),B(3,n)兩點.
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出 的x的取值范圍;
(3)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為順利通過“國家文明城市”驗收,東營市政府?dāng)M對城區(qū)部分路段的人行道地磚、綠化帶、排水管道等公用設(shè)施全面更新改造,根據(jù)市政建設(shè)的需要,需在40天內(nèi)完成工程.現(xiàn)有甲、乙兩個工程隊有意承包這項工程,經(jīng)調(diào)查知道,乙工程隊單獨完成此項工程的時間是甲工程隊單獨完成此項工程時間的2倍,若甲、乙兩工程隊合作只需10天完成.
(1)甲、乙兩個工程隊單獨完成此項工程各需多少天?
(2)若甲工程隊每天的工程費用是4.5萬元,乙工程隊每天的工程費用是2.5萬元,請你設(shè)計一種方案,既能按時完工,又能使工程費用最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】菱形ABCD中,兩條對角線AC,BD相交于點O,∠MON+∠BCD=180°,∠MON繞點O旋轉(zhuǎn),射線OM交邊BC于點E,射線ON交邊DC于點F,連接EF.
(1)如圖1,當(dāng)∠ABC=90°時,△OEF的形狀是;

(2)如圖2,當(dāng)∠ABC=60°時,請判斷△OEF的形狀,并說明理由;

(3)在(1)的條件下,將∠MON的頂點移到AO的中點O′處,∠MO′N繞點O′旋轉(zhuǎn),仍滿足∠MO′N+∠BCD=180°,射線O′M交直線BC于點E,射線O′N交直線CD于點F,當(dāng)BC=4,且 = 時,直接寫出線段CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程x2+(m2xm1=0有兩個相等的實數(shù)根,則m

值是

A. 0 B. 8 C. 4±2 D. 08

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+c與x軸交于點A,B,與y軸交于點C,其中點A在y軸的左側(cè),點C在x軸的下方,且OA=OC=5.

(1)求拋物線對應(yīng)的函數(shù)解析式;
(2)點P為拋物線對稱軸上的一動點,當(dāng)PB+PC的值最小時,求點P的坐標(biāo);
(3)在(2)條件下,點E為拋物線的對稱軸上的動點,點F為拋物線上的動點,以點P、E、F為頂點作四邊形PEFM,當(dāng)四邊形PEFM為正方形時,請直接寫出坐標(biāo)為整數(shù)的點M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自4月以來,我市推出了一項“共享單車”的便民舉措,為人們的城市生活出行帶來了方便.圖(1)所示的是某款單車的實物圖.圖(2)是這輛單車的部分幾何示意圖,其中車支架BC的長為20cm,且∠CBA=75°,∠CAB=30°.求車架檔AB的長.(參考數(shù)據(jù):sin75°= ,cos75°= ,tan75°=2+

查看答案和解析>>

同步練習(xí)冊答案