(2012•鞍山)如圖,某社區(qū)有一矩形廣場ABCD,在邊AB上的M點(diǎn)和邊BC上的N點(diǎn)分別有一棵景觀樹,為了進(jìn)一步美化環(huán)境,社區(qū)欲在BD上(點(diǎn)B除外)選一點(diǎn)P再種一棵景觀樹,使得∠MPN=90°,請?jiān)趫D中利用尺規(guī)作圖畫出點(diǎn)P的位置(要求:不寫已知、求證、作法和結(jié)論,保留作圖痕跡).
分析:首先連接MN,作MN的垂直平分線交MN于O,以O(shè)為圓心,
1
2
MN長為半徑畫圓,交BD于點(diǎn)P,點(diǎn)P即為所求.
解答:解:如圖所示:

點(diǎn)P即為所求.
點(diǎn)評:此題主要考查了作圖與應(yīng)用作圖,關(guān)鍵是理解題意,弄清問題中對所作圖形的要求,結(jié)合對應(yīng)幾何圖形的性質(zhì)和基本作圖的方法作圖.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山)如圖,直線a∥b,EF⊥CD于點(diǎn)F,∠2=65°,則∠1的度數(shù)是
25°
25°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山)如圖,在直角梯形ABCD中,AD∥BC,∠A=90°,AB=BC=4,DE⊥BC于點(diǎn)E,且E是BC中點(diǎn);動(dòng)點(diǎn)P從點(diǎn)E出發(fā)沿路徑ED→DA→AB以每秒1個(gè)單位長度的速度向終點(diǎn)B運(yùn)動(dòng);設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,△PBC的面積為S,則下列能反映S與t的函數(shù)關(guān)系的圖象是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山)如圖,△ABC內(nèi)接于⊙O,AB、CD為⊙O直徑,DE⊥AB于點(diǎn)E,sinA=
12
,則∠D的度數(shù)是
30°
30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山)如圖,某河的兩岸PQ、MN互相平行,河岸PQ上的點(diǎn)A處和點(diǎn)B處各有一棵大樹,AB=30米,某人在河岸MN上選一點(diǎn)C,AC⊥MN,在直線MN上從點(diǎn)C前進(jìn)一段路程到達(dá)點(diǎn)D,測得∠ADC=30°,∠BDC=60°,求這條河的寬度.(
3
≈1.732,結(jié)果保留三個(gè)有效數(shù)字).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鞍山)如圖,AB是⊙O的弦,AB=4,過圓心O的直線垂直AB于點(diǎn)D,交⊙O于點(diǎn)C和點(diǎn)E,連接AC、BC、OB,cos∠ACB=
13
,延長OE到點(diǎn)F,使EF=2OE.
(1)求⊙O的半徑;
(2)求證:BF是⊙O的切線.

查看答案和解析>>

同步練習(xí)冊答案