【題目】如圖,AB是⊙O的直徑,點C、D在⊙O上,∠A=2∠BCD,點E在AB的延長線上,∠AED=∠ABC
(1)求證:DE與⊙O相切;
(2)若BF=2,DF=,求⊙O的半徑.
【答案】(1)詳見解析;(2)5.
【解析】試題分析:(1)連接OD,由AB是⊙O的直徑可得∠ACB=90°,所以∠A+∠ABC=90°,即可證得∠BOD=∠A,從而推出∠ODE=90°,即可得到結論;(2)連接BD,過D作DH⊥BF于H,由弦切角定理得到∠BDE=∠BCD,推出△ACF與△FDB都是等腰三角形,根據(jù)等腰直角三角形的性質(zhì)得到FH=BH=BF=1,則FH=1,根據(jù)勾股定理得到HD=3,然后根據(jù)勾股定理列方程即可得到結論.
試題解析:(1)證明:連接OD,
∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠A+∠ABC=90°,
∵∠BOD=2∠BCD,∠A=2∠BCD,
∴∠BOD=∠A,
∵∠AED=∠ABC,
∴∠BOD+∠AED=90°,
∴∠ODE=90°,
即OD⊥DE,
∴DE與⊙O相切;
(2)解:連接BD,過D作DH⊥BF于H,
∵DE與⊙O相切,
∴∠BDE=∠BCD,
∵∠AED=∠ABC,
∴∠AFC=∠DBF,
∵∠AFC=∠DFB,
∴△ACF與△FDB都是等腰三角形,
∴FH=BH=BF=1,則FH=1,由勾股定理可得HD==3,
在Rt△ODH中,OH2+DH2=OD2,
即(OD﹣1)2+32=OD2,
∴OD=5,
∴⊙O的半徑是5.
科目:初中數(shù)學 來源: 題型:
【題目】若正多邊形的一個外角為60,則這個正多邊形的中心角的度數(shù)是( )
A. 30° B. 60° C. 90° D. 120°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在AB邊上E處,EQ與BC相交于F,若AD=8 cm,AB=6 cm,AE=4cm,則△EBF的周長是______________ cm.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中.有拋物線和.拋物線經(jīng)過原點,與x軸正半軸交于點A,與其對稱軸交于點B.P是拋物線上一點,且在x軸上方.過點P作x軸的垂線交拋物線于點Q.過點Q作PQ的垂線交拋物線于點(不與點Q重合),連結.設點P的橫坐標為m.
(1)求a的值;
(2)當拋物線經(jīng)過原點時,設△與△OAB重疊部分圖形的周長為l.
①求的值;
②求l與m之間的函數(shù)關系式;
(3)當h為何值時,存在點P,使以點O、A、Q、為頂點的四邊形是軸對稱圖形?直接寫出h的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】a,b,c是同一平面內(nèi)任意三條直線,交點可能有( )
A. 1個或2個或3個 B. 0個或1個或2個或3個
C. 1個或2個 D. 都不對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料:
小明遇到這樣一個問題:如圖1,△ABC中,AB=AC,點D在BC邊上,∠DAB=∠ABD,BE⊥AD,垂足為E,求證:BC=2AE.
小明經(jīng)探究發(fā)現(xiàn),過點A作AF⊥BC,垂足為F,得到∠AFB=∠BEA,從而可證△ABF≌△BAE(如圖2),使問題得到解決.
(1)根據(jù)閱讀材料回答:△ABF與△BAE全等的條件是 AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一個)
參考小明思考問題的方法,解答下列問題:
(2)如圖3,△ABC中,AB=AC,∠BAC=90°,D為BC的中點,E為DC的中點,點F在AC的延長線上,且∠CDF=∠EAC,若CF=2,求AB的長;
(3)如圖4,△ABC中,AB=AC,∠BAC=120°,點D、E分別在AB、AC邊上,且AD=kDB(其中0<k<),∠AED=∠BCD,求的值(用含k的式子表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知小明與小亮兩人在同一地點,若小明向北直走160 m,再向東直走80 m,可到購物中心,則小亮向西直走____m后,他與購物中心的距離為340 m.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com