【題目】下列式子正確的是(
A.x﹣(y﹣z)=x﹣y﹣z
B.﹣(x﹣y+z)=﹣x﹣y﹣z
C.x+2y﹣2z=x﹣2(z+y)
D.﹣a+c+d+b=﹣(a﹣b)﹣(﹣c﹣d)

【答案】D
【解析】解:A、x﹣(y﹣z)=x﹣y+z,錯(cuò)誤; B、﹣(x﹣y+z)=﹣x+y﹣z,括號(hào)前是“﹣”,去括號(hào)后,括號(hào)里的各項(xiàng)都改變符號(hào),錯(cuò)誤;
C、x+2y﹣2z=x﹣2(z﹣y),添括號(hào)后,括號(hào)前是“﹣”,括號(hào)里的各項(xiàng)都改變符號(hào),錯(cuò)誤;
D、正確.
故選D.
根據(jù)去括號(hào)和添括號(hào)法則選擇.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,ABBC

(1)利用尺規(guī)作圖,在AD邊上確定點(diǎn)E,使點(diǎn)E到邊AB,BC的距離相等(不寫作法,保留作圖痕跡);

(2)若BC=8,CD=5,則DE=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上三點(diǎn)A,O,B表示的數(shù)分別為60,-4,動(dòng)點(diǎn)PA出發(fā),以每秒6個(gè)單位的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng).

1)當(dāng)點(diǎn)P到點(diǎn)A的距離與點(diǎn)P到點(diǎn)B的距離相等時(shí),點(diǎn)P在數(shù)軸上表示的數(shù)是 ;

2)另一動(dòng)點(diǎn)RB出發(fā),以每秒4個(gè)單位的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)PR同時(shí)出發(fā),問點(diǎn)P運(yùn)動(dòng)多少時(shí)間追上點(diǎn)R?

3)若MAP的中點(diǎn),NPB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過程中,線段MN的長(zhǎng)度是否發(fā)生變化?若發(fā)生變化,請(qǐng)你說明理由;若不變,請(qǐng)你畫出圖形,并求出線段MN的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB>BC,AB=AC,DE是AB的垂直平分線,垂足為D點(diǎn),交AC于點(diǎn)E.

(1)若∠ABE=38°,求∠EBC的度數(shù);
(2)若△ABC的周長(zhǎng)為36cm,一邊為13cm,求△BCE的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD,P為射線AB上的一點(diǎn),以BP為邊作正方形BPEF,使點(diǎn)F在線段CB的延長(zhǎng)線上,連接EA、EC.

(1)如圖1,若點(diǎn)P在線段AB的延長(zhǎng)線上,求證:EA=EC;

(2)若點(diǎn)P在線段AB上.

①如圖2,連接AC,當(dāng)PAB的中點(diǎn)時(shí),判斷ACE的形狀,并說明理由;

②如圖3,設(shè)AB=a,BP=b,當(dāng)EP平分∠AEC時(shí),求a:b及∠AEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,把△ABC經(jīng)過平移得到△A′B′C′,若A(1,m),B(4,2),點(diǎn)A的對(duì)應(yīng)點(diǎn)A′(3,m+2),則點(diǎn)B對(duì)應(yīng)點(diǎn)B′的標(biāo)為(
A.(6,5)
B.(6,4)
C.(5,m)
D.(6,m)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=x+1y=–2x–4交點(diǎn)在( )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的是 ( )

A. 變量 x , y 滿足 x + 3y = 1 ,則 y x 的函數(shù)

B. 變量 x , y 滿足,則 y x 的函數(shù)

C. 變量 x , y 滿足∣ y = x , y x 的函數(shù)

D. 變量 x , y 滿足 y2 = x ,則 y x 的函數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)多邊形的內(nèi)角是1440°,求這個(gè)多邊形的多數(shù)是( )
A.7
B.8
C.9
D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案