精英家教網 > 初中數學 > 題目詳情
如圖,正方形ABCD的邊長為3a,兩動點E、F分別從頂點B、C同時開始以相同速度沿BC、CD運動,與△BCF相應的△EGH在運動過程中始終保持△EGH≌△BCF,對應邊EG=BC,B、E、C、G在一直線上.
(1)若BE=a,求DH的長;
(2)當E點在BC邊上的什么位置時,△DHE的面積取得最小值?并求該三角形面積的最小值.

【答案】分析:(1)可通過構建直角三角形求解.連接FH,則FH∥BE且FH=BE,F(xiàn)H⊥CD.因此三角形DFH為直角三角形.
點E、F分別從頂點B、C同時開始以相同速度沿BC、CD運動,那么DF=3a-a=2a,DF=2a,F(xiàn)H=a,根據勾股定理就求出了DH的長.
(2)設BE=x,△DHE的面積為y,通過三角形DHE的面積=三角形CDE的面積+梯形CDHG的面積-三角形EGH的面積,來得出關于x,y的函數關系式,然后根據函數的性質求出y取最小值時x的值,并求出此時y的值.
解答:解:(1)連接FH,則FH∥BE且FH=BE,
在Rt△DFH中,DF=3a-a=2a,F(xiàn)H=a,∠DFH=90°,
所以,DH==a;

(2)設BE=x,△DHE的面積為y,
依題意y=S△CDE+S梯形CDHG-S△EGH
=×3a×(3a-x)+×(3a+x)×x-×3a×x
=x2-ax+a2
y=x2-ax+a2=(x-a)2+a2
當x=a,即BE=BC,E是BC的中點時,y取最小值,△DHE的面積y的最小值為a2
點評:本題主要考查了正方形的性質,二次函數的綜合應用等知識點.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

19、如圖:正方形ABCD,M是線段BC上一點,且不與B、C重合,AE⊥DM于E,CF⊥DM于F.求證:AE2+CF2=AD2

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,正方形ABCD中,E點在BC上,AE平分∠BAC.若BE=
2
cm,則△AEC面積為
 
cm2

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正確結論的個數是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:初中數學 來源: 題型:

17、如圖,正方形ABCD的邊長為4,將一個足夠大的直角三角板的直角頂點放于點A處,該三角板的兩條直角邊與CD交于點F,與CB延長線交于點E,四邊形AECF的面積是
16

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,正方形ABCD的邊CD在正方形ECGF的邊CE上,連接BE、DG.
(1)若ED:DC=1:2,EF=12,試求DG的長.
(2)觀察猜想BE與DG之間的關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案