【題目】下列圖形中,既是軸對稱圖形又是中心對稱圖形的是( )
A.
B.
C.
D.

【答案】D
【解析】解:A、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;

B、是軸對稱圖形,不是中心對稱圖形,故本選項錯誤;

C、不是軸對稱圖形,是中心對稱圖形,故本選項錯誤;

D、既是軸對稱圖形又是中心對稱圖形,故本選項正確.

所以答案是:D.

【考點精析】根據(jù)題目的已知條件,利用軸對稱圖形和中心對稱及中心對稱圖形的相關(guān)知識可以得到問題的答案,需要掌握兩個完全一樣的圖形關(guān)于某條直線對折,如果兩邊能夠完全重合,我們就說這兩個圖形成軸對稱,這條直線就對稱軸;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與另一個圖形重合,那么我們就說,這兩個圖形成中心對稱;如果把一個圖形繞著某一點旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個圖形成中心對稱圖形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形紙片ABCD中,AB=6,AD=10,點P是邊BC上的動點,現(xiàn)將紙片折疊,使點A與點P重合,折痕與矩形邊的交點分別為E、F,要使折痕始終與邊AB、AD有交點,則BP的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在下列條件中:①∠A +∠B=∠C;②∠A:∠B:∠C=l:2:3;③∠A=90°-∠B;④∠A=∠B=∠C中,能確定△ABC是直角三角形的條件有( )

A. 1個; B. 2個; C. 3個; D. 4個;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下面是某同學對多項式(x24x+2)(x24x+6+4進行因式分解的過程.

解:設(shè)x24x=y

原式=y+2)(y+6+4 (第一步)

=y2+8y+16 (第二步)

=y+42(第三步)

=x24x+42(第四步)

回答下列問題:

1)該同學第二步到第三步運用了因式分解的_______

A.提取公因式

B.平方差公式

C.兩數(shù)和的完全平方公式

D.兩數(shù)差的完全平方公式

2)該同學因式分解的結(jié)果是否徹底?________.(填徹底不徹底)若不徹底,請直接寫出因式分解的最后結(jié)果_________

3)請你模仿以上方法嘗試對多項式(x22x)(x22x+2+1進行因式分解.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線l1∥l2,l3、l4l1、l2分別交于點AB、CD,點P在直線l3l4上且不與點AB、C、D重合.記∠AEP=∠1∠PFB=∠2,∠EPF=∠3

1)若點P在圖(1)位置時,求證:∠3=∠1+∠2;

2)若點P在圖(2)位置時,請直接寫出∠1∠2、∠3之間的關(guān)系;

3)若點P在圖(3)位置時,寫出∠1、∠2、∠3之間的關(guān)系并給予證明;

4)若點PC、D兩點外側(cè)運動時,請直接寫出∠1、∠2、∠3之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,為數(shù)軸上兩條線段,其中與原點重合,,且

1)當中點時,求線段的長;

2)線段以(1)中圖形為初始位置,同時開展向右運動,線段的運動速度為每秒5個單位長度,線段運動速度為每秒3個單位長度,設(shè)運動時間為秒,請結(jié)合運動過程解決以下問題:

①當時,求的值;

②當時,請直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是我國古代數(shù)學家楊輝最早發(fā)現(xiàn)的,稱為楊輝三角,他的發(fā)現(xiàn)比西方要早五百年左右,由此可見我國古代數(shù)學的成就是非常值得中華民族自豪的。楊輝三角中有許多規(guī)律,如它的每一行的數(shù)字正好對應(yīng)了(a+b)nn為非負整數(shù))的展開式中a按次數(shù)從大到小排列的項的系數(shù),例如:(a+b)2=a2+2ab+b2展開式中的系數(shù)1,2,1恰好對應(yīng)圖中第三行的數(shù)字;(a+b)3=a3+3a2b+3ab2+b3展開式中的系數(shù)1,3,3,1恰好對應(yīng)圖中第四行的數(shù)字…….請認真觀察此圖,根據(jù)前面各式的規(guī)律,寫出(a+b)6的展開式:(a+b)6=____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】直接寫出結(jié)果:(1)-11_____;(237_____;

3_____;(4)-7×0.5_____;(5(2)3_____

6(1)2n_______n為正整數(shù));(74x0的解是_____;

8x4 的解是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某公司有330臺機器要運送到外地,計劃租用甲、乙兩種貨車.已知甲種貨車每輛租金400元,乙種貨車每輛租金280元,若租用3輛甲種貨車和2輛乙種貨車,可運送195臺機器;若租用4輛甲種貨車和1輛乙種貨車,可運送210臺機器;
(1)求每輛甲種貨車和乙種貨車能運送的機器數(shù)量;
(2)請給出一次性將機器運送到目的地的最節(jié)省費用的租車方案,并說明理由.

查看答案和解析>>

同步練習冊答案