【題目】在平面直角坐標(biāo)系xOy中拋物線y=﹣x2+bx+c經(jīng)過點(diǎn)A、B、C,已知A(﹣1,0),C(0,3).
(1)求拋物線的表達(dá)式;
(2)如圖1,P為線段BC上一點(diǎn),過點(diǎn)P作y軸平行線,交拋物線于點(diǎn)D,當(dāng)△BCD的面積最大時,求點(diǎn)P的坐標(biāo);
(3)如圖2,拋物線頂點(diǎn)為E,EF⊥x軸于F點(diǎn),N是線段EF上一動點(diǎn),M(m,0)是x軸上一動點(diǎn),若∠MNC=90°,直接寫出實(shí)數(shù)m的取值范圍.
【答案】(1)拋物線解析式為y=﹣x2+2x+3;
(2)當(dāng)a=時,△BDC的面積最大,此時P(,);
(3)m的取值范圍為:﹣≤m≤5.
【解析】
(1)由y=﹣x2+bx+c經(jīng)過點(diǎn)A、B、C,A(﹣1,0),C(0,3),利用待定系數(shù)法即可求得此拋物線的解析式;
(2)首先令﹣x2+2x+3=0,求得點(diǎn)B的坐標(biāo),然后設(shè)直線BC的解析式為y=kx+b′,由待定系數(shù)法即可求得直線BC的解析式,再設(shè)P(a,3﹣a),即可得D(a,﹣a2+2a+3),即可求得PD的長,由S△BDC=S△PDC+S△PDB,即可得S△BDC=﹣(a﹣)2+,利用二次函數(shù)的性質(zhì),即可求得當(dāng)△BDC的面積最大時,求點(diǎn)P的坐標(biāo);
(3)直角三角形斜邊上的中線等于斜邊的一半列出關(guān)系式m=(n﹣)2﹣,然后根據(jù)n的取值得到最小值.
解:(1)由題意得:,
解得:,
∴拋物線解析式為y=﹣x2+2x+3;
(2)令﹣x2+2x+3=0,
∴x1=﹣1,x2=3,
即B(3,0),
設(shè)直線BC的解析式為y=kx+b′,
∴,
解得:,
∴直線BC的解析式為y=﹣x+3,
設(shè)P(a,3﹣a),則D(a,﹣a2+2a+3),
∴PD=(﹣a2+2a+3)﹣(3﹣a)=﹣a2+3a,
∴S△BDC=S△PDC+S△PDB
=PDa+PD(3﹣a)
=PD3
=(﹣a2+3a)
=﹣(a﹣)2+,
∴當(dāng)a=時,△BDC的面積最大,此時P(,);
(3)由(1),y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴E(1,4),
設(shè)N(1,n),則0≤n≤4,
取CM的中點(diǎn)Q(,),
∵∠MNC=90°,
∴NQ=CM,
∴4NQ2=CM2,
∵NQ2=(1﹣)2+(n﹣)2,
∴4[(1﹣)2+(n﹣)2]=m2+9,
整理得,m=n2﹣3n+1,即m=(n﹣)2﹣,
∵0≤n≤4,
當(dāng)n=上,M最小值=﹣,n=4時,M最小值=5,
綜上,m的取值范圍為:﹣≤m≤5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】撫順某中學(xué)為了解八年級學(xué)生的體能狀況,從八年級學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行體能測試,測試結(jié)果分為A,B,C,D四個等級.請根據(jù)兩幅統(tǒng)計圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測試結(jié)果為C等級的學(xué)生數(shù),并補(bǔ)全條形圖;
(3)若該中學(xué)八年級共有700名學(xué)生,請你估計該中學(xué)八年級學(xué)生中體能測試結(jié)果為D等級的學(xué)生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機(jī)的抽取2名學(xué)生,做為該校培養(yǎng)運(yùn)動員的重點(diǎn)對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某風(fēng)景區(qū)內(nèi)的公路如圖1所示,景區(qū)內(nèi)有免費(fèi)的班車,從入口處出發(fā),沿該公路開往草甸,途中?克郑ㄉ舷萝嚂r間忽略不計).第一班車上午8點(diǎn)發(fā)車,以后每隔10分鐘有一班車從入口處發(fā)車.小聰周末到該風(fēng)景區(qū)游玩,上午7:40到達(dá)入口處,因還沒到班車發(fā)車時間,于是從景區(qū)入口處出發(fā),沿該公路步行25分鐘后到達(dá)塔林.離入口處的路程(米)與時間(分)的函數(shù)關(guān)系如圖2所示.
(1)求第一班車離入口處的路程(米)與時間(分)的函數(shù)表達(dá)式.
(2)求第一班車從人口處到達(dá)塔林所蓄的時間.
(3)小聰在塔林游玩40分鐘后,想坐班車到草甸,則小聘聰最早能夠坐上第幾班車?如果他坐這班車到草甸,比他在塔林游玩結(jié)束后立即步行到草甸提早了幾分鐘?(假設(shè)每一班車速度均相同,小聰步行速度不變)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某書店同時購進(jìn)九年級數(shù)學(xué),語文兩種輔導(dǎo)書共冊,其進(jìn)價和售價如下表所示:
數(shù)學(xué) | 語文 | |
進(jìn)價(元/冊) | ||
售價(元/冊) |
設(shè)購進(jìn)語文輔導(dǎo)書冊.
已知當(dāng)該書店購進(jìn)數(shù)學(xué)輔導(dǎo)書的數(shù)量是語文輔導(dǎo)書的倍時,恰好用去元,求的值.
若設(shè)該書店售完這冊輔導(dǎo)書的總利潤為元.
①求與之間的函數(shù)關(guān)系式;
②該書店計劃最多投入元用于購買這兩種輔導(dǎo)書,則至少要購進(jìn)多少冊語文輔導(dǎo)書?書店可獲得的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC,AB=AC=10,BC=16.
(1)作△ABC的外接圓O(用圓規(guī)和直尺作圖,不寫作法,但要保留作圖痕跡)
(2)求OA的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC=6,BC=8,AB=10,以點(diǎn)C為圓心,4為半徑作圓.點(diǎn)D是⊙C上的一個動點(diǎn),連接AD、BD,則AD+BD的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了豐富學(xué)生課余生活,開展了“第二課堂”的活動,推出了以下四種選修課程:A.繪畫;B.唱歌;C.演講;D.十字繡.學(xué)校規(guī)定:每個學(xué)生都必須報名且 只能選擇其中的一個課程.學(xué)校隨機(jī)抽查了部分學(xué)生,對他們選擇的課程情況進(jìn)行了統(tǒng)計, 并繪制了如下兩幅不完整的統(tǒng)計圖.請結(jié)合統(tǒng)計圖中的信息,解決下列問題:
(1)這次學(xué)校抽查的學(xué)生人數(shù)是 ,C 所占圓心角為 ;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)如果該校共有1000名學(xué)生,請你估計該校報D的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形為矩形,點(diǎn)在上(不與,重合),連接,,以為一邊作正方形,使得點(diǎn)在邊上,給出以下結(jié)論:①;②;③;④;⑤;其中正確的結(jié)論的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校八、九年級部分學(xué)生的睡眠情況,隨機(jī)抽取了該校八、九年級部分學(xué)生進(jìn)行調(diào)查,已知抽取的八年級與九年級的學(xué)生人數(shù)相同,利用抽樣所得的數(shù)據(jù)繪制如圖的統(tǒng)計圖表:
睡眠情況分段情況如下
組別 | 睡眠時間x(小時) |
根據(jù)圖表提供的信息,回答下列問題:
(Ⅰ)直接寫出統(tǒng)計圖中的值 ;
(Ⅱ)睡眠時間少于6.5小時為嚴(yán)重睡眠不足,則從該校八、九年級各隨機(jī)抽一名學(xué)生,被抽到的這兩位學(xué)生睡眠嚴(yán)重不足的可能性分別有多大?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com