已知△ABC中, ∠BAC=90°,  AB=AC.

(1)(12分)如圖,D為AC上任一點,連接BD,過A點作BD的垂線交過C點與AB平行的直線CE于點E.

求證:BD=AE.

    

(2)(8分)若點D在AC的延長線上,如圖,其他條件同(1),請畫出此時的圖形,并猜想BD與AE是否仍然相等?說明你的理由.

 (1).證明:∵ ∠BAC=90°,  AB∥CE

∴ ∠ACE=90°

∴ ∠E+∠EAC=90°

又  AE⊥AD

∴ ∠ADB+∠EAC=90°

∴ ∠ADB=∠E

又  AB=AC

RT△ABD≌RT△CAE

∴ BD=AE

         (2)畫圖(此處略).猜想:仍有BD=AE.

     證明:(1)中的證明步驟同樣適用于(2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分別是邊AB、BC上的動點,且點P不與點A、B重合,點Q不與點B、C重合.
(1)在以下五個結(jié)論中:①∠CQP=45°;②PQ=AC;③以A、P、C為頂點的三角形全等于△PQB;④以A、P、C為頂點的三角形全等于△CPQ;⑤以A、P、C為頂點的三角形相似于△CPQ.一定不成立的是
 
.(只需將結(jié)論的代號填入題中的模線上).
(2)設(shè)AC=BC=1,當(dāng)CQ的長取不同的值時,△CPQ是否可能為直角三角形?若可能,請說明所有的精英家教網(wǎng)情況;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,則四邊形DBFE的周長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知△ABC中,AB=AC,以AB為直徑作⊙O交BC于D,交AC于E,過D作DF⊥AC于F
(1)求證:DF是⊙O的切線;
(2)連接DE,且AB=4,若∠FDC=30°,試求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,AB=3,AC=5,第三邊BC的長為一元二次方程x2-9x+20=0的一個根,則該三角形為
等腰或直角
等腰或直角
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,AB垂直平分線交AC于D,連接BE,若∠A=40°,則∠EBC=( �。�

查看答案和解析>>

同步練習(xí)冊答案