【題目】國(guó)家規(guī)定中小學(xué)生每天在校體育活動(dòng)時(shí)間不低于1小時(shí).為此,我區(qū)就你每天在校體育活動(dòng)時(shí)間是多少的問題隨機(jī)調(diào)查了區(qū)內(nèi)300名初中學(xué)生.根據(jù)調(diào)查結(jié)果繪制成的統(tǒng)計(jì)圖(部分)如圖所示,其中分組情況是:

A組:t<0.5h B組:0.5h≤t<1h C組:1h≤t<1.5h D組:t≥1.5h

請(qǐng)根據(jù)上述信息解答下列問題:

(1)C組的人數(shù)是   

(2)本次調(diào)查數(shù)據(jù)的中位數(shù)落在   組內(nèi);

(3)若我區(qū)有5400名初中學(xué)生,請(qǐng)你估計(jì)其中達(dá)國(guó)家規(guī)定體育活動(dòng)時(shí)間的人約有多少?

【答案】(1)120;(2)C;(3)3240

【解析】試題分析:

(1)由被抽查學(xué)生總數(shù)為300結(jié)合條形統(tǒng)計(jì)圖中的已知數(shù)據(jù)即可求出C組的人數(shù);

(2)由中位數(shù)的定義可知,這300個(gè)數(shù)據(jù)的中位數(shù)是:按從小到大的順序排列后的第150和第151個(gè)數(shù)據(jù)的平均數(shù),而由(1)結(jié)合條形統(tǒng)計(jì)圖中的數(shù)據(jù)可知,這兩個(gè)數(shù)據(jù)都在C組,故可得這組數(shù)據(jù)的中位數(shù)落在C組;

(3)由(1)中所得C組的人數(shù)結(jié)合條形統(tǒng)計(jì)圖中D組的人數(shù)可計(jì)算出達(dá)到國(guó)家規(guī)定的體育活動(dòng)時(shí)間的人數(shù)所占的百分比,用5400乘以這個(gè)百分比即可得到所求的數(shù)量了.

試題解析

(1C組的人數(shù)是300﹣(20+100+60=120(人),

故答案為:120

2)根據(jù)中位數(shù)的概念,中位數(shù)應(yīng)是第150、151人時(shí)間的平均數(shù),分析可得其均在C組,

故調(diào)查數(shù)據(jù)的中位數(shù)落在C組,

故答案為:C.

(3)達(dá)國(guó)家規(guī)定體育活動(dòng)時(shí)間的人數(shù)約占×100%=60%.

∴達(dá)國(guó)家規(guī)定體育活動(dòng)時(shí)間的人約有5400×60%=3240(人).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以直線AB上一點(diǎn)O為端點(diǎn)作射線OC,使∠AOC65°,將一個(gè)直角三角形的直角頂點(diǎn)放在點(diǎn)O處.(注:∠DOE90°)

1)如圖,若直角三角板DOE的一邊OD放在射線OA上,則∠COE   ;

2)如圖,將直角三角板DOE繞點(diǎn)O順時(shí)針方向轉(zhuǎn)動(dòng)到某個(gè)位置,若OC恰好平分∠AOE,求∠COD的度數(shù);

3)如圖,將直角三角板DOE繞點(diǎn)O任意轉(zhuǎn)動(dòng),如果OD始終在∠AOC的內(nèi)部,試猜想∠AOD和∠COE有怎樣的數(shù)量關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市銷售一種商品,成本每千克40元,規(guī)定每千克售價(jià)不低于成本,且不高于80元,經(jīng)市場(chǎng)調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:

售價(jià)x(元/千克)

50

60

70

銷售量y(千克)

100

80

60

(1)求y與x之間的函數(shù)表達(dá)式;

(2)設(shè)商品每天的總利潤(rùn)為W(元),求W與x之間的函數(shù)表達(dá)式(利潤(rùn)=收入﹣成本),并指出售價(jià)為多少元時(shí)獲得最大利潤(rùn),最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)閱讀理解:如圖①,在四邊形ABCD中,AB∥DC,E是BC的中點(diǎn),若AE是∠BAD的平分線,試判斷AB,AD,DC之間的等量關(guān)系.

解決此問題可以用如下方法:延長(zhǎng)AE交DC的延長(zhǎng)線于點(diǎn)F,易證△AEB≌△FEC,得到AB=FC,從而把AB,AD,DC轉(zhuǎn)化在一個(gè)三角形中即可判斷.

AB、AD、DC之間的等量關(guān)系為   ;

(2)問題探究:如圖②,在四邊形ABCD中,AB∥DC,AF與DC的延長(zhǎng)線交于點(diǎn)F,E是BC的中點(diǎn),若AE是∠BAF的平分線,試探究AB,AF,CF之間的等量關(guān)系,并證明你的結(jié)論.

(3)問題解決:如圖③,AB∥CF,AE與BC交于點(diǎn)E,BE:EC=2:3,點(diǎn)D在線段AE上,且∠EDF=∠BAE,試判斷AB、DF、CF之間的數(shù)量關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象交軸、軸分別于兩點(diǎn),交直線。

1)求點(diǎn)的坐標(biāo);

2)若,求的值;

3)在(2)的條件下,是線段上一點(diǎn),軸于,交,若,求點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了增強(qiáng)學(xué)生的身體素質(zhì),某校堅(jiān)持長(zhǎng)年的全員體育鍛煉,并定期進(jìn)行體能測(cè)試,下面是將某班學(xué)生的立定跳遠(yuǎn)成績(jī)(精確到0.01m),進(jìn)行整理后,分成5組,畫了的頻率分布直方圖的部分,已知:從左到右4個(gè)小組的頻率分別是:0.05,0.150.30,0.35,第五小組的頻數(shù)是9

1)該班參加測(cè)試的人數(shù)是多少?

2)補(bǔ)全頻率分布直方圖.

3)若該成績(jī)?cè)?/span>2.00m(含2.00)的為合格,問該班成績(jī)合格率是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)不透明的袋子中,裝有2個(gè)紅球,1個(gè)白球,1個(gè)黃球,這些球除顏色外都相同.求下列事件的概率:

(1)攪勻后從中任意摸出1個(gè)球,恰好是紅球;

(2)攪勻后從中任意摸出2個(gè)球,2個(gè)都是紅球.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E為 BC上的點(diǎn),F(xiàn)為 CD邊上的點(diǎn),且AE=AF,AB=4,設(shè)EC=x,△AEF 的面積為y,則yx之間的函數(shù)關(guān)系式是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一條數(shù)軸在原點(diǎn)O和點(diǎn)B處各折一下,得到一條折線數(shù)軸.圖中點(diǎn)A表示﹣6,點(diǎn)B表示10,點(diǎn)C表示14,我們稱點(diǎn)A和點(diǎn)C在數(shù)軸上相距20個(gè)長(zhǎng)度單位.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以2單位/秒的速度沿著折線數(shù)軸的正方向運(yùn)動(dòng),從點(diǎn)O運(yùn)動(dòng)到點(diǎn)B期間速度變?yōu)樵瓉淼囊话,之后立刻恢?fù)原速;同時(shí),動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),以1單位/秒的速度沿著數(shù)軸的負(fù)方向運(yùn)動(dòng),從點(diǎn)B運(yùn)動(dòng)到點(diǎn)O期間速度變?yōu)樵瓉淼膬杀,之后也立刻恢?fù)原速.設(shè)運(yùn)動(dòng)的時(shí)間為t秒.

問:

1)動(dòng)點(diǎn)P從點(diǎn)A運(yùn)動(dòng)至C點(diǎn)需要時(shí)間為 秒;P、Q兩點(diǎn)相遇時(shí),求出相遇點(diǎn)M所對(duì)應(yīng)的數(shù)是 ;

2)求當(dāng)t為何值時(shí),P、O兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度與Q、B兩點(diǎn)在數(shù)軸上相距的長(zhǎng)度相等.

查看答案和解析>>

同步練習(xí)冊(cè)答案