【題目】如圖,Rt△ACB中,∠C=90°,點D在AC上,∠CBD=∠A,過A、D兩點的圓的圓心O在AB上.
(1)判斷BD所在直線與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若AE=4,∠A=30°,求圖中由BD、BE、弧DE圍成陰影部分面積.
【答案】(1)見解析;(2)
【解析】
(1)連接OD,DE,求出∠ADE=90°=∠C,推出DE∥BC,求出∠EDB=∠CBD=∠A,根據(jù)∠A+∠OED=90°,求出∠EDB+∠ODE=90°,根據(jù)切線的判定推出即可;
(2)分別求出扇形DOE和△ODB的面積,即可求出答案.
解:(1)直線BD與⊙O的位置關(guān)系是相切
證明:連接OD、DE
∵∠C=90°
∴∠CBD+∠CDB=90°
∵∠A=∠CBD
∴∠A+∠CDB=90°
∵OD=OA
∴∠A=∠ADO
∴∠ADO+∠CDB=90°
∴∠ODB=180°﹣90°=90°
∴OD⊥BD
∵OD為半徑
∴BD是⊙O切線
(2)解:∵AE是⊙O直徑
∴∠ADE=90°
∵AE=4,∠A=30°
∴DE=AE=2,∠AED=60°
∵OD=OE
∴△DOE是等邊三角形
∴∠ODE=60°,OD=OE=DE=2
∵∠ODB=90°
∴∠EDB=30°
∴∠B=∠DEO﹣∠EDB=60°﹣30°=30°
∴OB=2OD=4
由勾股定理得:DB=,
∴陰影部分的面積S=S△ODB﹣S扇形DOE
=
=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中,,交邊于點.
(1)當(dāng)點與恰好重合時(如圖1),求的長;
(2)問:是否可能使、與都相似?若能,請求出此時的長;若不能,請說明理由(如圖2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,將一塊等腰直角三角板(△ABC)按如圖所示放置,若AO=2,OC=1,∠ACB=90°.
(1)直接寫出點B的坐標(biāo)是 ;
(2)如果拋物線l:y=ax2﹣ax﹣2經(jīng)過點B,試求拋物線l的解析式;
(3)把△ABC繞著點C逆時針旋轉(zhuǎn)90°后,頂點A的對應(yīng)點A1是否在拋物線l上?為什么?
(4)在x軸上方,拋物線l上是否存在一點P,使由點A,C,B,P構(gòu)成的四邊形為中心對稱圖形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,矩形ABCD,AB=6cm,AD=2cm,點P以2cm/s的速度從頂點A出發(fā)沿折線A-B-C向點C運動,同時點Q以lcm/s的速度從頂點C出發(fā)向點D運動,當(dāng)其中一個動點到達(dá)末端停止運動時,另一點也停止運動.
(1)問兩動點運動幾秒,使四邊形PBCQ的面積是矩形ABCD面積的;
(2)問兩動點經(jīng)過多長時間使得點P與點Q之間的距離為?若存在,
求出運動所需的時間;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,M為BC上一點,F是AM的中點,EF⊥AM,垂足為F,交AD的延長線于點E,交DC于點N.
(1)求證:△ABM∽△EFA;
(2)若AB=12,BM=5,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國高鐵迅猛發(fā)展,給我們的出行帶來極大的便捷,如圖1,是某種新設(shè)計動車車頭的縱截面一部分,曲線OBA是一開口向左,對稱軸正好是水平線OC的拋物線的一部分,點A、B是車頭玻璃罩的最高點和最低點,AC、BD是兩點到車廂底部的距離,OD=1.5米,BD=1.5米,AC=3米,請你利用所學(xué)的函數(shù)知識解決以下問題.
(1)為了方便研究問題,需要把曲線OBA繞點O旋轉(zhuǎn)轉(zhuǎn)化為我們熟悉的函數(shù),請你在所給的方框內(nèi),畫出你旋轉(zhuǎn)后函數(shù)圖象的草圖,在圖中標(biāo)出點O、A、B、C、D對應(yīng)的位置,并求你所畫的函數(shù)的解析式.
(2)如圖2,駕駛員座椅安裝在水平線OC上一點P處,實驗表明:當(dāng)PA+PB最小時,駕駛員駕駛時視野最佳,為了達(dá)到最佳視野,求OP的長.
(3)駕駛員頭頂?shù)讲Aд值母叨戎辽贋?/span>0.3米才感到壓抑,一個駕駛員坐下時頭頂?shù)揭蚊娴木嚯x為1米,在(2)的情況下,座椅最多條件到多少時他才感到舒適?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=-2x與反比例函數(shù)y=(k<0)的圖象交于A,B兩點,點P在以C(2,0)為圓心,1為半徑的⊙C上,Q是AP的中點,已知OQ長的最小值為,則k的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖2 - 4所示,長方形ABCD的長為5 cm,寬為4 cm,如果將它的長和寬都減去x(cm),那么它剩下的小長方形AB′C′D′的面積為y(cm2).
(1)寫出y與x的函數(shù)關(guān)系式;
(2)上述函數(shù)是什么函數(shù)?
(3)自變量x的取值范圍是什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,矩形ABCD的對角線AC的垂直平分線EF與AD、AC、BC分別交于點E、O、F.
(1)求證:四邊形AFCE是菱形;
(2)若AB=5,BC=12,EF=6,求菱形AFCE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com