【題目】在初中階段的函數(shù)學(xué)習(xí)中,我們經(jīng)歷了確定函數(shù)的表達式——利用函數(shù)圖象研究其性質(zhì)一一運用函數(shù)解決問題的學(xué)習(xí)過程.在畫函數(shù)圖象時,我們通過描點或平移的方法畫出了所學(xué)的函數(shù)圖象.同時,我們也學(xué)習(xí)了絕對值的意義

結(jié)合上面經(jīng)歷的學(xué)習(xí)過程,現(xiàn)在來解決下面的問題:在函數(shù)中,當時,時,

求這個函數(shù)的表達式;

在給出的平面直角坐標系中,請用你喜歡的方法畫出這個函數(shù)的圖象;

已知函數(shù)的圖象如圖所示,結(jié)合你所畫的函數(shù)圖象,直接寫出不等式的解集.

【答案】詳見解析;

【解析】

1)把x=0,y=4;x=1y=3代入函數(shù)中,求出k、b即可;

2)根據(jù)(1)中的表達式可以畫出該函數(shù)的圖象;

3)根據(jù)圖象可以直接寫出所求不等式的解集.

1)把x=0,y=4代入得:4=

b=3,

x=1y=3,b=3代入得:

k=1,

即函數(shù)的表達式為,

2)由題意得:

畫圖象如下圖:

3)由上述圖象可得:當x<0x2時,

故答案為:x<0x2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:一組自然數(shù)1,2,3…k,去掉其中一個數(shù)后剩下的數(shù)的平均數(shù)為16,則去掉的數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用若干個小立方塊搭成一個幾何體,使它從正面看與從左面看都是如圖的同一個圖.通過實際操作,并與同學(xué)們討論,解決下列問題:

(1)所需要的小立方塊的個數(shù)是多少?你能找出幾種?

(2)畫出所需個數(shù)最少和所需個數(shù)最多的幾何體從上面看到的圖,并在小正方形里注明在該位置上小立方塊的個數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某超市促銷活動,將三種水果采用甲、乙、丙三種方式搭配裝進禮盒進行銷售.每盒的總成本為盒中三種水果成本之和,盒子成本忽略不計.甲種方式每盒分別裝三種水果;乙種方式每盒分別裝三種水果 .甲每盒的總成本是每千克 水果成本的倍,每盒甲的銷售利潤率為;每盒甲比每盒乙的售價低;每盒丙在成本上提高標價后打八折出售,獲利為每千克 水果成本的倍.當銷售甲、乙、丙三種方式搭配的禮盒數(shù)量之比為時,則銷售總利潤率為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O ABC 的外接圓,O 點在 BC 邊上,BAC 的平分線交O 于點 D,連接 BDCD,過點 D BC 的平行線,與 AB 的延長線相交于點 P

(1)求證:PD O 的切線;

(2)求證:PBD∽△DCA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮計劃暑期結(jié)伴參加志愿者活動.小明想?yún)⒓泳蠢戏⻊?wù)活動,小亮想?yún)⒓游拿鞫Y儀宣傳活動.他們想通過做游戲來決定參加哪個活動,于是小明設(shè)計了一個游戲,游戲規(guī)則是:在三張完全相同的卡片上分別標記4、5、6三個數(shù)字,一人先從三張卡片中隨機抽出一張,記下數(shù)字后放回,另一人再從中隨機抽出一張,記下數(shù)字,若抽出的兩張卡片標記的數(shù)字之和為偶數(shù),則按照小明的想法參加敬老服務(wù)活動,若抽出的兩張卡片標記的數(shù)字之和為奇數(shù),則按照小亮的想法參加文明禮儀宣傳活動.你認為這個游戲公平嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)一次函數(shù)y=kx+b(k,b是常數(shù),k≠0)的圖象過A(1,3),B(﹣1,﹣1)兩點.

(1)求該一次函數(shù)的表達式;

(2)若點(2a+2,a2)在該一次函數(shù)圖象上,求a的值.

(3)已知點C(x1,y1)和點D(x2,y2)在該一次函數(shù)圖象上,設(shè)m=(x1﹣x2)(y1﹣y2),判斷反比例函數(shù)y=的圖象所在的象限,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在六邊形中,分別平分,則的度數(shù)為(

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形ABCDBCEF,AFBEAFBE交于點G,∠AGB=60°.

(1)求證:AFDE;

(2)AB=6,BC=8,求AF

查看答案和解析>>

同步練習(xí)冊答案