【題目】如圖1,對稱軸為直線x=的拋物線經(jīng)過B(2,0)、C(0,4)兩點,拋物線與x軸的另一交點為A.
(1)求拋物線的解析式;
(2)若點P為第一象限內拋物線上的一點,設四邊形COBP的面積為S,求S的最大值;
(3)如圖2,若M是線段BC上一動點,在x軸是否存在這樣的點Q,使△MQC為等腰三角形且△MQB為直角三角形?若存在,求出點Q的坐標;若不存在,請說明理由.
【答案】(1);(2)6;(3)Q(,0).
【解析】(1)由對稱性得:A(﹣1,0),設拋物線的解析式為:y=a(x+1)(x﹣2),把C(0,4)代入:4=﹣2a,a=﹣2,∴y=﹣2(x+1)(x﹣2),∴拋物線的解析式為:;
(2)如圖1,設點P(m,),過P作PD⊥x軸,垂足為D,∴S=S梯形+S△PDB=,∴S==,∵﹣2<0,∴S有最大值,則S大=6;
(3)如圖2,存在這樣的點Q,使△MQC為等腰三角形且△MQB為直角三角形,理由是:
設直線BC的解析式為:y=kx+b,把B(2,0)、C(0,4)代入得:,解得:,∴直線BC的解析式為:y=﹣2x+4,設M(a,﹣2a+4),過A作AE⊥BC,垂足為E,則AE的解析式為:,則直線BC與直線AE的交點E(1.4,1.2),設Q(﹣x,0)(x>0),∵AE∥QM,∴△ABE∽△QBM,∴①,由勾股定理得:②,由①②得:=4(舍),=,當a=時,x=,∴Q(,0).
科目:初中數(shù)學 來源: 題型:
【題目】綜合題。
(1)如圖(1)點P是正方形ABCD的邊CD上一點(點P與點C,D不重合),點E在BC的延長線上,且CE=CP,連接BP,DE.求證:BP=DE且BP⊥DE;
(2)直線EP交AD于F,連接BF,F(xiàn)C.點G是FC與BP的交點.
①若BC=2CE時,求證:BP⊥CF;
②若BC=nCE(n是大于1的實數(shù))時,記△BPF的面積為S1 , △DPE的面積為S2 .
求證:S1=(n+1)S2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線與x軸交于A,B兩點,與y軸交于點C,點B的坐標為(3,0)
(1)求m的值及拋物線的頂點坐標.
(2)點P是拋物線對稱軸l上的一個動點,當PA+PC的值最小時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,點A、B的坐標分別為(1,4)和(3,0),點C是y軸上的一個動點,且A、B、C三點不在同一條直線上,當△ABC的周長最小時,點C的坐標是( )
A.(0,0)
B.(0,1)
C.(0,2)
D.(0,3)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=60°,D是三角形外一點,且BD=CD,AD與BC交于一點E,∠BDC=120°,則下列結論錯誤的是( )
A.AD垂直平分BC
B.AB=2BD
C.∠ACD=90°
D.△ABD≌△ACD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為響應市教育局倡導的“陽光體育運動”的號召,全校學生積極參與體育運動.為了進一步了解學校九年級學生的身體素質情況,體育老師在九年級800名學生中隨機抽取50位學生進行一分鐘跳繩次數(shù)測試,以測試數(shù)據(jù)為樣本,繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖,如下所示:
組別 | 次數(shù)x | 頻數(shù)(人數(shù)) |
第1組 | 80≤x<100 | 6 |
第2組 | 100≤x<120 | 8 |
第3組 | 120≤x<140 | a |
第4組 | 140≤x<160 | 18 |
第5組 | 160≤x<180 | 6 |
請結合圖表完成下列問題:
(1)表中的a=;
(2)請把頻數(shù)分布直方圖補充完整;
(3)這個樣本數(shù)據(jù)的中位數(shù)落在第組;
(4)若九年級學生一分鐘跳繩次數(shù)(x)達標要求是:x<120為不合格;120≤x<140為合格;140≤x<160為良;x≥160為優(yōu).根據(jù)以上信息,請你估算學校九年級同學一分鐘跳繩次數(shù)為優(yōu)的人數(shù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com