【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別交線段BC,AC于點(diǎn)D,E,過點(diǎn)D作DF⊥AC,垂足為F,線段FD,AB的延長線相交于點(diǎn)G.

(1)求證:DF是⊙O的切線;

(2)若CF=1,DF=,求圖中陰影部分的面積.

【答案】(1)見解析(2)2π.

【解析】(1)連接AD、OD,由AB為直徑可得出點(diǎn)D為BC的中點(diǎn),由此得出OD為△BAC的中位線,再根據(jù)中位線的性質(zhì)即可得出OD⊥DF,從而證出DF是⊙O的切線;

(2)CF=1,DF=,通過解直角三角形得出CD=2、∠C=60°,從而得出△ABC為等邊三角形,再利用分割圖形求面積法即可得出陰影部分的面積.

(1)證明:連接AD、OD,如圖所示.

∵AB為直徑,

∴∠ADB=90°,

∴AD⊥BC,

∵AC=AB,

∴點(diǎn)D為線段BC的中點(diǎn).

∵點(diǎn)O為AB的中點(diǎn),

∴OD為△BAC的中位線,

∴OD∥AC,

∵DF⊥AC,

∴OD⊥DF,

∴DF是⊙O的切線.

(2)解:在Rt△CFD中,CF=1,DF=

∴tan∠C==,CD=2,

∴∠C=60°,

∵AC=AB,

∴△ABC為等邊三角形,

∴AB=4.

∵OD∥AC,

∴∠DOG=∠BAC=60°,

∴DG=ODtan∠DOG=2,

∴S陰影=S△ODG﹣S扇形OBD=DGOD﹣πOB2=2π.

 “點(diǎn)睛”本題考查了等腰三角形的性質(zhì)、切線的判定、扇形面積的計(jì)算以及三角形面積的計(jì)算,解題的關(guān)鍵是:(1)證出OD⊥DF;(2)利用分割圖形求面積求出陰影部分的面積.本題屬于中檔題,難度不大,解決該題型題目時(shí),利用分割圖形求面積法是解題的難點(diǎn),在日常練習(xí)中應(yīng)加強(qiáng)訓(xùn)練.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)G在對角線BD上(不與點(diǎn)B,D重合),GE⊥DC于點(diǎn)E,GF⊥BC于點(diǎn)F,連結(jié)AG.

(1)寫出線段AG,GE,GF長度之間的數(shù)量關(guān)系,并說明理由;
(2)若正方形ABCD的邊長為1,∠AGF=105°,求線段BG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從A地向B地打長途,不超3分鐘,收費(fèi)2.4元,以后每超一分超加收一元,若通話時(shí)間為t分鐘(t3且t是整數(shù)),則付話費(fèi)y元與t分鐘函數(shù)關(guān)系式是__________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)數(shù)用科學(xué)記數(shù)法表示為2.37×105 , 則這個(gè)數(shù)是( )
A.237
B.2370
C.23700
D.237000

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD,AB=6,點(diǎn)E在邊CD上,CE=2DE,將△ADE沿AE對折至△AFE,延長EF交邊BC于點(diǎn)G,連接AG、CF,下列結(jié)論:①△ABG≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FCA=3.6,其中正確結(jié)論是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某辦公樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時(shí),辦公樓在建筑物的墻上留下高22米的影子CE,而當(dāng)光線與地面夾角是45°時(shí),辦公樓頂A在地面上的影子F與墻角C有25米的距離(B,F(xiàn),C在一條直線上).

(1)求辦公樓AB的高度;

(2)若要在A,E之間掛一些彩旗,請你求出A,E之間的距離.

(參考數(shù)據(jù):sin22°≈,cos22°≈,tan22≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC的內(nèi)角∠ABC與外角∠ACD的平分線交于點(diǎn)E,且CE∥AB,AC與BE交于點(diǎn)E,則下列結(jié)論錯(cuò)誤的是( 。

A.CB=CE
B.∠A=∠ECD
C.∠A=2∠E
D.AB=BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在邊長為1的小正方形網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上.

(1)B點(diǎn)關(guān)于y軸的對稱點(diǎn)坐標(biāo)為;
(2)將△AOB向左平移3個(gè)單位長度,再向上平移2個(gè)單位長度得到△A1O1B1 , 請畫出△A1O1B1
(3)在(2)的條件下,△AOB邊AB上有一點(diǎn)P的坐標(biāo)為(a,b),則平移后對應(yīng)點(diǎn)P1的坐標(biāo)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,EF是對角線BD上兩點(diǎn),且∠EAF=45°,將ADF繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°后,得到ABQ,連接EQ,求證:

1EA是∠QED的平分線;

2EF2=BE2+DF2

查看答案和解析>>

同步練習(xí)冊答案